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Kemp et al. [1] argue that two objects are similar to the extent that they appear to have been produced
by the same generative process. Here we show the stimuli used in our experiment (Figures 1 and 2) and
derive the results mentioned in our paper.

Featural Model

Suppose that s1 and s2 are two objects represented as binary feature vectors. Let n be the number of features
possessed by one or both of the objects, and let the domain D be the set of all n-place binary vectors. A
generative process over D is specified by a n-place vector θ, where θi is the probability that an object has
value 1 on feature i. We place independent beta priors on each θi:

θi ∼ Beta(α, β)

si ∼ Binomial(θi),

where si is the ith feature value for object s, α and β are hyperparameters and Beta(·, ·) is the beta function.
Our generative theory states that

sim(s1, s2) =

∫

P (s1, s2|θ)p(θ)dθ
∫

P (s1|θ)p(θ)dθ
∫

P (s2|θ)p(θ)dθ
. (1)

Consider first the numerator.
∫

P (s1, s2|θ)p(θ)dθ =

∫

P (s1
1, s

2
1|θ1) . . . P (s1

n, s2
n|θn)dθ1 . . . dθn

=
∏

i

∫

P (s1
i , s

2
i |θi)dθi

Now
∫

P (s1
i , s

2
i |θi)dθi =

{

B(α+2,β)
B(α,β) = α(α+1)

(α+β)(α+β+1) if s1
i = s2

i = 1,
B(α+1,β+1)

B(α,β) = αβ
(α+β)(α+β+1) otherwise

where B(·, ·) is the Beta function. Thus

∫

P (s1, s2|θ)p(θ)dθ =

(

α(α + 1)

(α + β)(α + β + 1)

)y12
(

αβ

(α + β)(α + β + 1)

)n−y12

where y12 is the number of features shared by both objects.
The terms in the denominator of Equation 1 can be computed similarly:

∫

P (sj |θ)p(θ)dθ =

(

α

α + β

)yj
(

β

α + β

)n−yj
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where yj is the number of features possessed by sj .
Then

sim(s1, s2) =

(

α + β

α + β + 1

)n (

α + 1

α

)y12

where we use the fact that y1 + y2 − y12 = n. Since we are interested only in the rank order of the pairwise
similarities, we can take logarithms of both sides:

log(sim(s1, s2)) = n log

(

α + β

α + β + 1

)

+ y12 log

(

α + 1

α

)

= k1y
12 − k2(n − y12)

= k1|s
1 ∪ s2| − k2(|s

1 − s2| − |s2 − s1|)

where k1 = log
(

α+1
α

)

− log
(

α+β+1
α+β

)

, k2 = log
(

α+β+1
α+β

)

, |s1 ∪ s2| is the number of features shared by both

objects, and |si − sj | is the number of features possessed by si but not sj .

Spatial Model

Suppose that the domain D is a multidimensional space with dimension n. Consider a Gaussian generative
process determined by a a mean µ and covariance matrix Σ. For simplicity, we place a uniform (hence
improper) prior over µ:

µ ∼ Uniform(Rn)

s ∼ Normal(µ,Σ),

where µ and s are random variables with n dimensions, and Σ is a constant n by n matrix.
The numerator of Equation 1 becomes

∫

P (s1, s2|θ)p(θ)dθ ∝

∫

exp((s1 − µ)T Σ−1(s1 − µ) − (s2 − µ)T Σ−1(s2 − µ))dµ

Completing the square we see that

∫

P (s1, s2|θ)p(θ)dθ ∝ exp

(

−
1

2
(s1 − s2)T Σ−1(s1 − s2)

)
∫

exp

(

−2

(

s1 + s2

2
− µ

)T

Σ−1

(

s1 + s2

2
− µ

)

)

dµ

∝ exp

(

−
1

2
(s1 − s2)T Σ−1(s1 − s2)

)

Each term in the denominator of Equation 1 takes the form

∫

P (sj |θ)p(θ)dθ ∝

∫

exp

(

−
1

2
(sj − µ)T Σ−1(sj − µ)

)

dµ ∝ 1

Thus

sim(s1, s2) ∝ exp

(

−
1

2
(s1 − s2)T Σ−1(s1 − s2)

)

∴ log(sim(s1, s2)) = −
1

2
(s1 − s2)T Σ−1(s1 − s2)

where the equality holds up to addition of a constant. We therefore see that similarity is inversely related
to the Mahalanobis distance between s1 and s2.
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Transformational Model

Suppose we are given a set of objects D and a set of transformations T . We assume that every transformation
is reversible — if there is a transformation mapping s1 into s2, there must also be a transformation mapping
s2 into s1. We use a generative process over D specified by a prototype θ ∈ D chosen from a uniform (and
possibly improper) distribution over D. To generate an object s from the process, we sample a transformation
count k from an exponential distribution, choose k transformations at random from T , then apply them to
the prototype:

θ ∼ Uniform(D)

k ∼ Exponential(λ)

ti ∼ Uniform(T )

s = tk · tk−1 . . . · t1(θ)

where λ is a constant, and ti is the ith transformation chosen.
We use an approximation to Equation 1:

sim(s1, s2) =
P (s1|θ12)P (s2|θ12)p(θ12)

P (s1|θ1)p(θ1)P (s2|θ2)p(θ2)
, (2)

where θ12 = argmaxθP (s1, s2|θ), θ1 = argmaxθP (s1|θ), and θ2 = argmaxθP (s2|θ). We further approximate
each term in Equation 2 using MAP settings of k and t:

P (sj |θj) =

∫

P (sj |θj , k, t)P (k, t)dkdt ≈ P (sj |θj , k̂, t̂)P (k̂, t̂)

where θj , k̂ and t̂ are set to values that maximize P (θ, k, t|sj). Since θj = sj and k̂ = 0, P (sj |θj , k̂, t̂)P (k̂, t̂) =
P (k = 0) = λ ∝ 1. Similarly, we use

P (s1|θ12)P (s2|θ12) ≈ P (s1|θ12, k̂1, t̂1)P (s2|θ12, k̂2, t̂2)P (k̂1, k̂2, t̂1, t̂2).

k̂1 + k̂2 is the length of the shortest path joining s1 and s2 where each step along the path is a transfor-
mation from T . Since the transformations are reversible, P (θ|s1, s2) is the same for any θ along this path,
and we can set θ12 to any of these values. We now see that

sim(s1, s2) ≈ P (k̂1, k̂2, t̂1, t̂2) ∝
1

|T |k̂1+k̂2
exp(−λ(k̂1 + k̂2))

∴ log(sim(s1, s2)) = −(k̂1 + k̂2)(log(|T |) + λ) ∝ −(k̂1 + k̂2)

Thus the similarity of s1 and s2 is inversely related to the transformation distance between these objects.
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Figure 1: The 20 binary triads. Prototype strings are in the center, transformation strings are on the left, and HMM strings are on the
right.
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Figure 2: The 16 ternary triads. Prototype strings are in the center, transformation strings are on the left, and HMM strings are on
the right.
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