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Abstract

Everyday knowledge about living things, physical objects and
the beliefs and desires of other people appears to be organized
into sophisticated systems that are often called intuitive the-
ories. Two long term goals for psychological research are to
understand how these theories are mentally represented and
how they are acquired. We argue that the language of thought
hypothesis can help to address both questions. First, composi-
tional languages can capture the content of intuitive theories.
Second, any compositional language will generate an account
of theory learning which predicts that theories with short de-
scriptions tend to be preferred. We describe a computational
framework that captures both ideas, and compare its predic-
tions to behavioral data from a simple theory learning task.

Any comprehensive account of human knowledge must ac-

knowledge two principles. First, everyday knowledge is more

than a list of isolated facts, and much of it appears to be orga-

nized into richly structured systems that are sometimes called

intuitive theories. Even young children, for instance, have

systematic beliefs about domains including folk physics, folk

biology, and folk psychology [10]. Second, some aspects of

these theories appear to be learned. Developmental psychol-

ogists have explored how intuitive theories emerge over the

first decade of life, and at least some of these changes appear

to result from learning.

Although theory learning raises some challenging prob-

lems, two computational principles that may support this abil-

ity have been known for many years. First, a theory-learning

system must be able to represent the content of any theory

that it acquires. A learner that cannot represent a given sys-

tem of concepts is clearly unable to learn this system from

data. Second, there will always be many systems of concepts

that are compatible with any given data set, and a learner must

rely on some a priori ordering of the set of possible theories

to decide which candidate is best [5, 9]. Loosely speaking,

this ordering can be identified with a simplicity measure, or a

prior distribution over the space of possible theories.

There is at least one natural way to connect these two

computational principles. Suppose that intuitive theories are

represented in a “language of thought:” a language that al-

lows complex concepts to be represented as combinations of

simpler concepts [5]. A compositional language provides a

straightforward way to construct sophisticated theories, but

also provides a natural ordering over the resulting space of

theories: the a priori probability of a theory can be identified

with its length in this representation language [3, 7]. Combin-

ing this prior distribution with an engine for Bayesian infer-

ence leads immediately to a computational account of theory

learning. There may be other ways to explain how people

represent and acquire complex systems of knowledge, but it

is striking that the “language of thought” hypothesis can ad-

dress both questions.

This paper describes a computational framework that helps

to explain how theories are acquired, and that can be used to

evaluate different proposals about the language of thought.

Our approach builds on previous discussions of concept

learning that have explored the link between compositional

representations and inductive inference. Two recent ap-

proaches propose that concepts are represented in a form of

propositional logic, and that the a priori plausibility of an

inductive hypothesis is related to the length of its representa-

tion in this language [4, 6]. Our approach is similar in spirit,

but is motivated in part by the need for languages richer than

propositional logic. The framework we present is extremely

general, and is compatible with virtually any representation

language, including various forms of predicate logic. Meth-

ods for learning theories expressed in predicate logic have

previously been explored in the field of Inductive Logic Pro-

gramming, and we recently proposed a theory-learning model

that is inspired by this tradition [7]. Our current approach is

motivated by similar goals, but is better able to account for

the discovery of abstract theoretical laws.

The next section describes our computational framework

and introduces the specific logical language that we will con-

sider throughout. Our framework allows relatively sophisti-

cated theories to be represented and learned, but we evaluate

it here by applying it to a simple learning problem and com-

paring its predictions with human inductive inferences.

A Bayesian approach to theory discovery

Suppose that a learner observes some of the relationships that

hold among a fixed, finite set of entities, and wishes to dis-

cover a theory that accounts for these data. Suppose, for in-

stance, that the entities are thirteen adults from a remote tribe

(a through m), and that the data specify that the spouse rela-

tion (S(·, ·)) is true of some pairs (Figure 1). One candidate

theory states that S(·, ·) is a symmetric relation, that some of

the individuals are male (M(·)), that marriages are permitted

only between males and non-males, and that males may take

multiple spouses but non-males may have only one spouse

(Figure 1b). Other theories are possible, including the theory

which states only that S(·, ·) is symmetric.

Accounts of theory learning should distinguish between at

least three kinds of entities: theories, models, and data. A

theory is a set of statements that captures constraints on pos-

sible configurations of the world. For instance, the theory in

Figure 1b rules out configurations where the spouse relation

is asymmetric. A model of a theory specifies the extension
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Figure 1: (a) A graph representing marital ties among a group

of 13 people. (b) A hierarchical Bayesian framework for the-

ory discovery. The theory is a collection of statements in

some logical language, the model specifies the extensions of

all predicates mentioned in the theory, and the data represent

the information observed by the learner.

of each predicate in a way that is consistent with the theory.

Note that model is a technical term that we have inherited

from standard treatments of formal logic [2]. Figure 1b in-

cludes one model of the theory described already. The theory

includes one unary predicate M(·) and one binary predicate

S(·, ·), and the model specifies whether or not M(·) is true for

each individual, and whether or not S(·, ·) is true for each

pair of individuals. The actual state of the world is captured

by just one model, but typically there will be many models

consistent with a given theory. The data in Figure 1b rep-

resent the information available to the theory-learner. Often

a learner will have partial information about the state of the

world, and the data will capture only some of the information

specified by the underlying model.

A hierarchical Bayesian approach allows us to transform

the diagram in Figure 1b into a formal account of theory

learning. The theory T that best accounts for data set D is

the theory that maximizes the posterior probability

P (T |D) ∝ P (D|T )P (T ) =
∑

M

P (D|M)P (M |T )P (T )

where we have expanded P (D|T ) as a sum over all possible

models M of theory T . To complete our framework we need

to specify a prior on theories P (T ), along with distributions

P (M |T ) and P (D|M) that specify how models are gener-

ated from theories and how data are generated from models.

P (T ): A prior distribution on theories

The learning framework described in the previous section is

extremely general, and can be combined with many different

proposals about how theories are mentally represented. We

work with the idea that theories are mentally represented in

some language, and that the prior probability of any theory

is inversely related to the length of its description in this lan-

guage. As a starting point, we work with a language that is

closely related to function-free first-order logic. The theory

in Figure 1 is expressed in this language, and many additional

examples are shown in Figure 2.

Our language includes symbols representing predicates of

different arities (e.g. M(·) and S(·, ·)) variable symbols (e.g.

x, y and z), and Boolean connectives which capture nega-

tion (¬), conjunction (∧), disjunction(∨), material implica-

tion (→), and biconditional implication (↔). Four quanti-

fiers are included: for all (

A

), there exists at least one ( E),

there exists one or fewer ( F), and there exists precisely one

( P). The language includes the identity symbol (=), and we

also include an operator T (·, ·), where T (R, C) indicates that

the transitive closure of R(·, ·) is C(·, ·) (in other words, that

C(x1, xn) is true if and only if there is a set {x1, x2, . . . , xn}
such that R(x1, x2) is true, R(x2, x3) is true, and so on).

Many aspects of this language are inherited from standard

treatments of first-order logic, but several representational

choices deserve some attention. First, note that the language

includes no symbols for constants. We are especially inter-

ested in how abstract theories might be learned, and it will be

convenient to restrict our attention to laws that do not refer

directly to individual objects. Second, the language includes

two quantifiers ( Fand P) that are missing from most logi-

cal languages, in part because statements that rely on these

quantifiers can be rewritten as statements that use the familiar

existential quantifier and the identity symbol instead. These

conversions, however, often produce long and unwieldy state-

ments, and our language is based on the hypothesis that F

and Pare no more complex psychologically than the familiar

quantifier E.

The transitive closure operator T (·, ·) represents our great-

est departure from familiar first-order logic. Unlike the quan-

tifiers Fand P, the operator T (·, ·) cannot be defined within a

first-order language. The concept of transitive closure, how-

ever, seems psychologically natural, and is probably one of

the most important concepts that cannot be formulated in a

first-order language. First-order logic provides a simple start-

ing point for investigations of the language of thought, but

there is no reason to think that mental representations are lim-

ited to a first-order language. We believe that attempts to for-

malize the language of thought will eventually need to draw

on the expressive resources of higher order logics, and the

operator T is a preliminary step in this direction.

Given any theory T expressed in our language, the prior

probability P (T ) is determined by the number of symbols in

T : P (T ) ∝ λ|T |, where λ is a parameter between 0 and 1.

For all applications in this paper we set λ = 0.9.

Once we have committed to a representation language and

a setting of λ, the prior distribution P (T ) is unambiguously

specified. This prior, however, depends critically on the lan-

guage chosen, and our goal is to work towards a language



1.

A

x Fy R(x, y). At most one outgoing edge per node

2.

A

y Fx R(x, y). At most one incoming edge per node

3.

A

x Ey R(x, y). At least one outgoing edge per node

4.

A

y Ex R(x, y). At least one incoming edge per node

5.

A

x Py R(x, y). Exactly one outgoing edge per node

6.

A

y Px R(x, y). Exactly one incoming edge per node

7. Ex Py R(x, y). At least one node with exactly one outgoing edge

8. Ey Px R(x, y). At least one node with exactly one incoming edge

9. Px

A

y¬R(x, y). Exactly one node with no outgoing edge

10. Py

A

x¬R(x, y). Exactly one node with no incoming edge

11.

A

x

A

y R(x, y) → Pz (¬y = z ∧ R(x, z)). Zero or two outgoing edges per node

12.

A

x¬C(x, x). No cycles in R(·, ·)
13. Ex C(x, x). At least one cycle in R(·, ·)
14.

A

x C(x, x). R(·, ·) has a path between any pair of nodes

15. Ex

A

y¬x = y → C(x, y). At least one node is an ancestor of every other node

16. Px

A

y¬x = y → C(x, y). Exactly one node is an ancestor of every other node

17. Ey

A

x¬x = y → C(x, y). At least one node is a descendant of every other node

18. Py

A

x¬x = y → C(x, y). Exactly one node is a descendant of every other node

19.

A

w

A

x

A

y

A

z¬R(w, x) ∨ ¬R(x, y) ∨ ¬R(y, z). No paths of length three

20.

A

x

A

y

A

z R(x, y) ∧ R(y, z) → R(x, z). R(·, ·) is transitive

21.

A

x

A

y

A

z R(x, y) ∧ R(y, z) ∧ ¬x = z → R(x, z). R(·, ·) is transitive with all self-edges removed.

22.

A

x

A

y R(x, y) → R(y, x). R(·, ·) is symmetric

23. Ex Ey R(x, y) ∧ R(y, x). At least one symmetric edge

24.

A

x

A

y S(x, y) ↔ R(x, y) ∨ R(y, x). T (S, T).

A

x

A

y T(x, y). R(·, ·) is connected.

25. Ew Ex Ey Ez¬w = x ∧ ¬w = y ∧ ¬w = z ∧ ¬x = y ∧ ¬x = z ∧ ¬y = z∧

A

u

A

v R(u, v) ↔ (p = w ∧ q = x) ∨ (p = x ∧ q = y) ∨ (p = y ∧ q = z).
Exhaustive description of the chain

26. (law not shown) Exhaustive description of the tree

27. (law not shown) Exhaustive description of the transitive relation

28. (law not shown) Exhaustive description of the pair of cliques

29. (law not shown) Exhaustive description of the ring

30. (law not shown) Exhaustive description of the random relation

Figure 2: Thirty laws used to approximate the predictions of our model. Relation C(·, ·) is the transitive closure of R(·, ·).

that captures the language of thought as closely as possi-

ble. Our current language does not achieve this goal: note,

for instance, that all of the Boolean connectives are assumed

to produce the same cognitive burden, but it is well known

that conjunctions are easier to learn than disjunctions in some

contexts [1]. Although our current language is little more

than a starting point, it allows us to demonstrate our theory-

learning framework in action, and to show how proposals

about knowledge representation can guide and be guided by

proposals about theory learning.

P (M |T ) and P (D|M): Generating models and data

Since we are working within a finite domain, the number of

models for any given theory is finite. For any theory T , we

use a distribution P (M |T ) which assigns uniform probability

to any model M that is consistent with T , and zero probability

to all remaining models.

A model M unambiguously specifies which statements are

true, but often only some of these statements will be avail-

able to a theory-learner. Figure 1b, for instance, shows a

case where a learner must reason about the social struc-

ture of a tribe given only a limited sample of positive ex-

amples. The distribution P (D|M) should capture the as-

sumptions that were used to generate the data D. In some

cases, the data will include both positive (S(a, e)) and nega-

tive examples(¬S(a, b)), but in other cases a learner may ob-

serve only positive examples. In some cases, the data D will

be known to be uncontaminated by noise, but in other cases

the distribution P (D|M) should acknowledge that some parts

of the data D may not accurately represent the underlying

model M . Our framework can handle all of these cases, but

we will focus on a simple setting where P (D|M) is 1 if each

observation in D is true according to M , and 0 otherwise.

Now that all components of our model have been specified,

we can combine them to discover the theory T that best ac-

counts for a given data set D. Our framework makes two psy-

chological contributions: our language for representing the-

ories is a proposal about the language of thought, and our

model predicts which theories people will infer when pre-

sented with a given data set. Note, however, that our approach

does not attempt to capture the psychological mechanisms

that might allow human learners to identify the theory T that

maximizes P (T |D).

Learning abstract relational laws

In principle, the formal framework we described can be used

to study the acquisition of rich and complex theories. Here,

however, we explore one of the simplest settings where ab-

stract theoretical laws must be discovered. We consider prob-

lems where a learner observes a single binary relation R(·, ·)
and must discover a theory that explains the structure of this

relation. Working in this relatively simple setting allows us to

provide a transparent demonstration of our model in action,

and to test some of its behavioral predictions.

Any binary relation R(·, ·) can be represented as a graph

where there is an edge from node i to node j if and only

if R(i, j) is true. The six binary relations that we will con-

sider are shown in Figure 3a. Note that each relation is con-
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Figure 3: (a) Six binary relations provided as input to our theory learning framework. (b) Laws used to construct candidate

theories for each relation (numbers correspond to laws in Figure 2). (c) Posterior distribution, likelihood function, and prior

distribution for each relation. Each bar represents a theory, and the theories along the x-axis of each plot are sorted in order of

decreasing posterior probability. (d) Top-scoring theories and their posterior probabilities. For instance, the two best theories

for the ring have posterior probabilities of around 0.2, and the first of these theories includes laws 5 and 14. Theories marked

with C are cases where the observed relation is defined as the transitive closure C of a latent relation R.

sistent with many abstract regularities: for instance, the first

graph in Figure 3a is a graph where each node has at most

one child, a graph where each node has at most one parent,

a graph without cycles, and a connected graph. These and

many other regularities can be formulated as abstract theoret-

ical laws, and deciding which laws account best for a given

relation is a challenging problem.

When considering potential explanations of each data set,

our model uses a hypothesis space that includes all theories

that can be formulated in the language we have chosen. Im-

plementing this approach raises some formidable challenges,

but we can approximate the predictions of our model. Fig-

ure 2 shows 30 theoretical laws that are consistent with one

or more of the relations in Figure 3a, and we can approxi-

mate our model by restricting ourselves to a hypothesis space

that includes any theory which corresponds to a set of laws

from this list. In practice, even this approximation is chal-

lenging to compute, and we make one further simplification.

For each relation in Figure 3a, we choose some subset of the

laws in Figure 2, and consider all theories that can be cre-

ated by combining laws from this subset. Future work can at-

tempt to develop better approximations of our model, includ-

ing approximations that do not rely on a hypothesis space of

pre-specified laws. Even the rough approximation considered

here, however, can provide some insight into theory learning.

The laws considered for each relation are shown in Fig-

ure 3b, and in each case we have tried to include the laws

that seem most likely to produce theories with high poste-

rior probability. Some theories include laws (e.g. law 12) that

refer to relation C, and to any such theory we add the state-

ment T (R, C) which indicates that C(·, ·) is the transitive clo-

sure of R(·, ·). For the fifth relation (the order) we include

two copies of any theory that refers to relation C: one where

the observed relation is assumed to be R and any statement

involving C merely places constraints on the extension of R,

and one where the observed relation is defined as the transi-

tive closure C of some latent relation R(·, ·). Finally, we add

add two extra theories to each hypothesis space: the empty

theory which is consistent with any possible model, and a

theory which simply enumerates the structure of the observed

relation (see laws 25 through 30 in Figure 2).

When computing the posterior probability of a given theory

T , the primary challenge is to compute the sum P (D|T ) =∑
M

P (D|M)P (M |T ). Since the examples in Figure 3a all

use relatively small domains, we compute this sum using the

nauty program [8] to enumerate all models up to isomor-

phism, and to count the number of models consistent with

each isomorphism class. Note that this approach is not in-
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Figure 4: (a) Six training relations. (b) Transfer predictions generated by our hierarchical framework. Each prediction is labeled

with its posterior probability. (c) Experimental results. The number of participants who made each prediction is shown.

tended as a model of psychological processing, and is merely

a convenient way to compute the predictions of our model.

Figure 3c shows the prior distribution P (T ), the likelihood

function P (D|T ) and the posterior distribution P (T |D) for

the six problems we consider. The candidate theories for each

relation are arranged along the x-axis of each plot in order

of decreasing posterior probability. The plots confirm that

the prior and the likelihood both play important roles in our

framework. Among all theories consistent with the data, the

best are those that are consistent with few other possible data

sets (i.e. theories with high likelihood) and that can be con-

cisely described (i.e. theories with high prior probability).

Figure 3d identifies the top four theories for each problem.

For instance, the equal top theory for the chain relation indi-

cates that each node has at most one incoming edge (law 2),

that there is exactly one node with no outgoing edges (law

9), and that there are no cycles (law 12). Some reflection

should confirm that the only relations consistent with these

constraints are chains. For each of the first five relations, the

best theory according to our framework captures some of the

regularities that are apparent in the data, but the best theory

for the random relation is the empty theory.

Inductive predictions

Theory acquisition supports at least two kinds of inductive

predictions. In previous work we have explored inferences

about new or sparsely observed elements from a known do-

main [7]. After observing marriage ties within tribe T, for in-

stance, a learner who concludes that “Bob tends to have lots

of spouses” can predict that a new member of tribe T is fairly

likely to end up married to Bob. Here we focus on inductive

transfer, or predictions about domains that are entirely novel.

After learning about tribe T, for instance, a learner may form

expectations about the likely structure of novel tribe U. For

instance, a learner who concludes that “exactly one person

has lots of spouses” should expect that exactly one member

of U will have many spouses.

Each relation R(·, ·) in Figure 3a is defined over a domain

that includes four or five entities. Given experience with

one of these relations, our model makes predictions about

the structure of novel domains. The posterior distributions

P (T |D) in Figure 3c provide the basis for these predictions:

P (Rnew|D) =
∑

T
P (Rnew|T )P (T |D) where D represents

the data observed for the original domain, and Rnew is the

version of relation R defined over the novel domain. For

instance, if the posterior distribution P (T |D) assigns high

probability to theories which state that R is symmetric, then

our framework predicts will predict that Rnew is very likely to

be symmetric.

Figure 4 shows the top transfer predictions for each of the

six relations. In each case, we asked our model to make pre-

dictions about a novel domain with six entities. Even though

this inductive problem is highly underconstrained, our frame-

work makes predictions that seem relatively intuitive, and we

tested these predictions in a behavioral experiment.



Experiment

We trained participants on the six relations shown in Fig-

ure 4a and asked them to describe similar relations over novel

sets of entities.

Participants. 12 members of the MIT community were paid

for participating in this experiment.

Materials and Methods. The experiment included six

within-participant conditions that correspond to the six rela-

tions in Figure 3a. In each condition, participants learned a

single relation (the training relation) then generated similar

relations for two novel domains, one with six entities and the

other with seven entities.

The cover story informed participants that they were learn-

ing about the organization of several small companies. Each

relation in Figure 3a captures information flow within one of

the companies. The experiment was carried out on a com-

puter, and during the training phase the interface had a single

button labeled “Observe.” Upon clicking this button, partic-

ipants were told about an event corresponding to one of the

edges in the current training relation: they might be told, for

example, that “John sends an envelope to Bill” (employee

names were randomized across participants). After some

number of observations, participants were given a test which

included a yes/no question about each pair of employees (e.g.

“Does John send envelopes to Bill?”). Participants continued

to observe edges in the training relation until they were able

to answer all of the test questions correctly.

After participants had passed this test, they were told about

another company in the same industry with six employees,

and were asked to “indicate one way in which the company

might be organized.” Responses were provided by checking

boxes on a screen which included one box for each (directed)

pair of employees.

Results. The relations most commonly generated for the six-

employee companies are shown in Figure 4. These results

confirm that people are able to discover abstract relational

regularities given a single training relation. Our model pro-

vides a good account of these findings: for all conditions ex-

cept the tree condition, the top (or equal top) choice is iden-

tical to the top (or equal top) choice according to our frame-

work. Some aspects of the data, however, are not captured

by our approach. For instance, people often choose a trans-

fer relation that can be generated by connecting new nodes

to a copy of the training relation, and this preference might

explain why people do not generate a set of three pairs in the

cliques condition, even though our model rates this configu-

ration as its equal top choice.

Although our formal framework does not capture all as-

pects of our results, we know of no other computational

framework that is likely to perform better. In particular, ap-

proaches (e.g. [7]) that simply search for the shortest descrip-

tion of the data in a first-order language will not be adequate.

Note, for instance, that the shortest description of the ring is

an exhaustive list of the edges in this relation, and contains no

abstract laws that provide a basis for inductive transfer. The

hierarchical aspect of our approach is essential for discover-

ing abstract regularities in cases like this, and may capture

one of the principles that allow humans to discover abstract

theoretical laws.

Conclusion

Proposals about the language of thought and about theory ac-

quisition should be tightly coupled. Knowing how theories

are represented should allow us to predict which theories will

be readily learned by people, and identifying the theories that

people learn readily should provide important clues about the

representations that support this ability. We described a com-

putational framework that supports both kinds of investiga-

tion. We suggested that theories that are represented in a

logical language, and explored the inductive consequences

of one such language. Our language is proposed as a very

rough approximation to the language of thought, but can cer-

tainly be improved in many respects. More important than

the specific language we considered is the general framework

we described: a framework for simultaneously exploring how

theories are represented and how they are acquired.

Many knowledge representation schemes have been pro-

posed by psychologists, computer scientists, and philoso-

phers, including the lambda calculus, many flavors of logic,

and several languages for representing semantic networks.

Previous work, however, has not always focused on the induc-

tive consequences of these languages. An important direction

for future work is to combine some of these proposals with

our framework, and to discover which languages lead to in-

ductive predictions that best match human inferences. Proba-

bly no existing language will turn out to be entirely satisfac-

tory, but understanding the strengths and weaknesses of exist-

ing representation languages should lead to future languages

that correspond more closely to the language of thought.
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