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Abstract

 

Inductive learning is impossible without overhypotheses, or constraints on the hypotheses considered by the learner. Some of
these overhypotheses must be innate, but we suggest that hierarchical Bayesian models can help to explain how the rest are
acquired. To illustrate this claim, we develop models that acquire two kinds of overhypotheses – overhypotheses about feature
variability (e.g. the shape bias in word learning) and overhypotheses about the grouping of categories into ontological kinds
like objects and substances.

 

Introduction

 

Compared to our best formal models, children are
remarkable for learning so much from so little. A single
labeled example is enough for children to learn the
meanings of some words (Carey & Bartlett, 1978), and
children develop grammatical constructions that are
rarely found in the sentences that they hear (Chomsky,
1980). These inductive leaps appear even more
impressive when we consider the many interpretations
of the data that are logically possible but apparently
never entertained by children (Goodman, 1955;
Quine, 1960).

Learning is impossible without constraints of some
sort, but the apparent ease of children’s learning may
rely on relatively strong inductive constraints. Researchers
have suggested, for example, that the M-constraint
(Keil, 1979) and the shape bias (Heibeck & Markman,
1987) help explain concept learning, that universal
grammar guides the acquisition of linguistic knowledge
(Chomsky, 1980), and that abstract knowledge about
physical objects (Spelke, 1990) supports inferences about
visual scenes. Constraints like these may be called theories
or schemata, but we will borrow a term of Goodman’s
and refer to them as overhypotheses.
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Although overhypotheses play a prominent role in nativist
approaches to development (Keil, 1979; Chomsky, 1980;
Spelke, 1990), some overhypotheses are probably learned
(Goldstone & Johansen, 2003). One such overhypothesis
is the shape bias – the expectation that all of the objects
in a given category tend to have the same shape, even
if  they differ along other dimensions, such as color and
texture. Smith, Jones, Landau, Gershkoff-Stowe and
Samuelson (2002) provide strong evidence that the shape
bias is learned by showing that laboratory training
allows children to demonstrate this bias at an age before
it normally emerges. Other overhypotheses that appear
to be learned include constraints on the rhythmic pattern
of  a child’s native language (Jusczyk, 2003), and
constraints on the kinds of feature correlations that are
worth tracking when learning about artifacts or other
objects (Madole & Cohen, 1995).

The acquisition of overhypotheses raises some difficult
challenges for formal models. It is difficult at first to
understand how something as abstract as an over-
hypothesis might be learned, and the threat of an infinite
regress must also be confronted – what are the inductive
constraints that allow inductive constraints to be learned?
Connectionist models have been able to overcome some
of these challenges: Samuelson (2002) and Colunga and
Smith (2005) have developed models that acquire the
shape bias, and Rogers and McClelland (2004) suggest
that connectionist models can acquire many other kinds
of abstract knowledge. The connectionist approach,
however, aims to provide a mechanistic account of learning,
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 Other authors distinguish between theories, schemata, scripts, and
overhypotheses. There are important differences between these
varieties of abstract knowledge, but it is useful to have a single term
(for us, overhypothesis) that includes them all.
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and is not ideal for explaining the computational principles
that support the acquisition of overhypotheses. Connec-
tionist models, for instance, do not clearly distinguish
between knowledge at different levels of abstraction, and
it is difficult to analyze a successful model and decide
which overhypotheses are responsible for its success, and
how they might have been acquired.

This paper suggests that hierarchical Bayesian models
(Good, 1980; Gelman, Carlin, Stern & Rubin, 2003) can
help to explain the computational principles which allow
overhypotheses to be learned. Hierarchical Bayesian
models (HBMs) include representations at multiple
levels of  abstraction, and show how knowledge can
be acquired at levels quite remote from the data given
by experience. To illustrate these points, we describe
one of the simplest possible HBMs and use it to suggest
how overhypotheses about feature-variability (e.g. the
shape bias) are acquired and used to support categorization.
We also present an extension of this basic model that
groups categories into ontological kinds (e.g. objects
and substances) and discovers the features and the
patterns of feature variability that are characteristic of
each kind.

The hierarchical Bayesian approach shows how
knowledge can be simultaneously acquired at multiple
levels of  abstraction, and may help to reconcile two
competing approaches to cognitive development. The
bottom-up approach suggests that concrete knowledge is
available before abstract knowledge, and that abstract
knowledge is acquired by generalizing over instances of
concrete knowledge (Piaget & Inhelder, 1969; Smith

 

et al

 

., 2002; Karmiloff-Smith, 1992). One instance of this
approach is the claim that perceptual categories are
acquired before more abstract categories (Cohen, 1998;
French, Mareschal, Mermillod & Quinn, 2004). An
alternative approach – the top-down approach – suggests
that abstract knowledge is sometimes available before
more concrete knowledge is securely in place (Keil, 1998;
Mandler, 2003). Mandler and McDonough (1993), for
example, argue that infants form global categories like
‘animal’ and ‘vehicle’ before basic-level categories like
‘rabbit’ and ‘car’. The hierarchical Bayesian approach
provides a unifying framework that accommodates both
top-down and bottom-up learning. More precisely,
HBMs support the simultaneous acquisition of abstract
and concrete knowledge, and allow for three possibilities:
depending on the task and the data set, learning may be
significantly faster for concrete knowledge than for
abstract knowledge, about equally rapid for both kinds
of  knowledge, or significantly faster for abstract
knowledge than for concrete knowledge. We use the
simple model we develop to provide examples of all
three cases.

 

Overhypotheses and HBMs

 

Goodman introduces the notion of an overhypothesis
with an example based on bags of colored marbles
(Goodman, 1955). Suppose that S is a stack containing
many bags of marbles. We empty several bags and dis-
cover that some bags contain black marbles, others con-
tain white marbles, but that the marbles in each bag are
uniform in color. We now choose a new bag – bag 

 

n

 

 –
and draw a single black marble from the bag. On its
own, a single draw would provide little information
about the contents of the new bag, but experience with
previous bags may lead us to endorse the following
hypothesis:

 

H: All marbles in bag 

 

n

 

 are black.

 

If  asked to justify the hypothesis, we might invoke the
following overhypothesis:

 

O: Each bag in stack 

 

S

 

 contains marbles that are uniform in
color.

 

Goodman gives a precise definition of ‘overhypothesis’
but we use the term more generally to refer to any form
of abstract knowledge that sets up a hypothesis space
at a less abstract level. By this criterion, 

 

O

 

 is an over-
hypothesis since it sets up a space of hypotheses about the
marbles in bag 

 

n

 

: they could be uniformly black, uni-
formly white, uniformly green, and so on.

Hierarchical Bayesian models (Gelman 

 

et al

 

., 2003)
capture this notion of overhypothesis by allowing
hypothesis spaces at several levels of abstraction. We
give an informal introduction to this modeling
approach, leaving all technical details for the next sec-
tion. Suppose that we wish to explain how a certain kind
of inference can be drawn from a given body of data. In
Goodman’s case, the data are observations of several
bags (

 

y

 

i

 

 indicates the observations for bag 

 

i

 

)  and we are
interested in the ability to predict the color of the next
marble to be drawn from bag 

 

n

 

 (Figure 1a). The first
step is to identify a kind of knowledge (level 1 knowledge)
that explains the data and that supports the ability of
interest. In Goodman’s case, level 1 knowledge is
knowledge about the color distribution of  each bag
(θθθθ

 

i

 

 indicates the color distribution for the 

 

i

 

th bag).
We then ask how the level 1 knowledge might be

acquired, and the answer will make reference to a more
abstract body of knowledge (level 2 knowledge). For the
marbles scenario, level 2 knowledge is knowledge about
the distribution of the θθθθ

 

 variables. As described in the
next section, this knowledge can be represented using
two parameters, 

 

α

 

 and ββββ

 

 (Figure 1a). Roughly speaking,

 

α

 

 captures the extent to which the marbles in each
individual bag are uniform in color, and ββββ

 

 captures the
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average color distribution across the entire stack of
bags. If  we now go on to ask how the level 2 knowledge
might be acquired, the answer will rely on a body of
knowledge at an even higher level, level 3. In Figure 1a,
this knowledge is represented by 

 

λ

 

, which captures prior
knowledge about the values of 

 

α

 

 and ββββ

 

. The parameter

 

λ

 

 and the pair (

 

α

 

, ββββ

 

) are both overhypotheses, since each
sets up a hypothesis space at the next level down. We will
assume that the level 3 knowledge is specified in advance,
and show how an overhypothesis can be learned at
level 2.

Within cognitive science, linguists have provided the
most familiar example of this style of model building.
Language comprehension can be explained using parse
trees for individual sentences (level 1 knowledge). Parse
trees, in turn, can be explained with reference to a gram-
mar (level 2 knowledge), and the acquisition of this
grammar can be explained with reference to Universal
Grammar (level 3 knowledge). There are few settings
where cognitive scientists have discussed more than three
levels, but there is no principled reason to stop at level
3. Ideally, we should continue adding levels until the
knowledge at the highest level is simple enough or general
enough that it can be plausibly assumed to be innate.

As the grammar-learning example suggests, it has
long been known that hierarchical models are capable in
principle of explaining the acquisition of overhypotheses.
The value of hierarchical 

 

Bayesian

 

 models (HBMs) is
that they explain how overhypotheses can be acquired
by rational statistical inference. Given observations at
the lowest level of an HBM, statistical inference can be
used to compute posterior distributions over entities at
the higher levels. In the model of Figure 1a, for instance,
acquiring an overhypothesis is a matter of acquiring
knowledge at level 2. The posterior distribution 

 

p

 

(

 

α

 

, ββββ

 

 

 

| 

 

y

 

)
represents a normative belief  about level 2 knowledge –
the belief, given the data 

 

y

 

, that the marbles in each bag
are close to uniform in color.

From a computational perspective (Marr, 1982), the
problem of overhypothesis acquisition can be reduced to
a search problem. Given a space of possible overhypotheses,
the acquisition problem can be solved by searching for
the candidate (e.g. the pair (

 

α

 

, ββββ

 

)) with maximum posterior
probability. The claim that the set of candidates is known
in advance may seem inconsistent with the intuition that
the repertoire of a learner can grow over time. Some
formal models appear to capture this intuition: for
example, the hypothesis space of a constructivist neural

Figure 1 (a) A hierarchical Bayesian model. Each setting of (α, ββββ) is an overhypothesis: ββββ represents the color distribution across 
all categories, and α represents the variability in color within each category. (b) A model with separate overhypotheses for two 
ontological kinds meant to correspond loosely to objects and substances. α1 represents knowledge about feature variability within 
the first ontological kind (object categories are homogeneous in shape but not in material), and ββββ 1 captures the characteristic 
features of the entities belonging to the first kind (objects tend to be solid).
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network (Fahlman & Lebiere, 1990; Shultz, 2003) appears
to grow when new units are added. The apparent
inconsistency here rests on a mismatch between two
possible definitions of ‘hypothesis space’. At the level of
computational theory, a hypothesis space represents the
abstract potential of a learning system: if  one imagines
all possible streams of  input that a learning system
could receive, the hypothesis space includes all states of
knowledge which the system could possibly reach. For a
constructivist neural network, this notion of a hypothesis
space includes all configurations that could be reached
by adding new units. The second possible definition is
often used when describing a process model. In this
context, ‘hypothesis space’ often refers to the set of
hypotheses that are currently entertained by the model,
and this set will usually change over time. Since our goal
is to develop computational theories, we will work with
the abstract, static definition of  ‘hypothesis space’, but
it is important to note that our theories have many pos-
sible implementations, some of which appear just as
dynamic and as flexible as constructivist neural networks.
For example, one of  our theories (Figure 1b) has
implementations that can ‘grow’ by introducing new
ontological kinds when new data are observed.

 

A computational theory of feature variability

 

We now describe one formal instantiation of the model
in Figure 1a. There may be other ways to formalize
overhypotheses about feature variability, but ours is
perhaps the simplest account of how these overhypotheses
can be acquired and simultaneously used to guide learning
at lower levels. Suppose we are working with a set of 

 

k

 

colors. Initially we set 

 

k

 

 = 2 and use black and white as
the colors. Let θθθθ

 

i

 

 indicate the true color distribution for
the 

 

i

 

th bag in the stack: if  60% of the marbles in bag 7
are black, then θθθθ

 

7

 

 = [0.6, 0.4]. Let 

 

y

 

i

 

 indicate a set of
observations of the marbles in bag 

 

i

 

. If  we have drawn
five marbles from bag 7 and all but one are black, then

 

y

 

7

 

 = [4, 1].
We assume that 

 

y

 

i

 

 is drawn from a multinomial distri-
bution with parameter θθθθ

 

i

 

: in other words, the marbles
responsible for the observations in 

 

y

 

i

 

 are drawn in-
dependently at random from the 

 

i

 

th bag, and the color of
each depends on the color distribution θθθθ

 

i

 

 for that bag.
The vectors θθθθ

 

i

 

 are drawn from a Dirichlet distribution
parameterized by a scalar 

 

α

 

 and a vector ββββ

 

. The para-
meter 

 

α

 

 determines the extent to which the colors in each
bag tend to be uniform, and ββββ

 

 represents the distribution
of colors across the entire collection of bags (Figure 2).
Each possible setting of (

 

α

 

, ββββ

 

) is an overhypothesis, and
to discover which of these settings is best we need to
formalize our 

 

a priori

 

 expectations about the values of

these variables. We use a uniform distribution on ββββ

 

 and
an exponential distribution on 

 

α

 

, which captures a weak
prior expectation that the marbles in any bag will tend
to be uniform in color (Figure 3a.i). The mean of the
exponential distribution is 

 

λ

 

, and each possible setting
of 

 

λ

 

 is an over-overhypothesis (Figure 1a), or an over-
hypothesis one level higher than the level of (

 

α

 

, ββββ

 

). The
qualitative predictions of  our model are relatively
insensitive to changes in 

 

λ

 

, and all simulations described
in this paper use 

 

λ

 

 = 1.
So far, we have assumed that we are working with a

single dimension – for Goodman, marble color. Sup-
pose, however, that some marbles are made from metal
and others are made from glass, and we are interested in
material as well as color. A simple way to deal with
multiple dimensions is to assume that each dimension
is independently generated, and to introduce separate
values of 

 

α

 

 and ββββ

 

 for each dimension. When working
with multiple features, we often use 

 

α

 

 to refer to the
collection of 

 

α

 

 values along all dimensions, ββββ

 

 for the set
of all ββββ

 

 vectors, and 

 

y

 

 for the set of counts along all
dimensions.

Figure 2 The Dirichlet distribution serves as a prior on θθθθ, the 
color distribution of a bag of marbles. Assume that there are 
two possible colors – black and white – and let θ1 be the 
proportion of black marbles within the bag. Shown here are 
distributions on θ1 when the parameters of the Dirichlet 
distribution (α and ββββ) are systematically varied. When α is 
small, the marbles in each individual bag are near-uniform in 
color (θ1 is close to 0 or close to 1), and ββββ determines the 
relative proportions of bags that are mostly black and bags that 
are mostly white. When α is large, the color distribution for 
any individual bag is expected to be close to the color 
distribution across the entire population of bags 
(θ1 is close to β1).
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To fit the model to data we assume that counts 

 

y

 

 are
observed for one or more bags. Our goal is to compute
the posterior distribution 

 

p

 

(

 

α

 

, ββββ

 

, {θθθθ

 

i

 

} | 

 

y

 

): in other words,
we wish to simultaneously discover level 2 knowledge

about 

 

α

 

 and ββββ

 

 and level 1 knowledge about the color
distribution θθθθ

 

i

 

 of  each individual bag i. As described in
the Appendix, inferences about α and ββββ can be made by
drawing a sample from p(α, ββββ | y), the posterior distribution

Figure 3 (a) Generalizations made by the model in Figure 1a. (i) Prior distributions on log(α), ββββ and θθθθ1 indicate the model’s 
expectations before any data have been observed; (ii) posterior distributions after observing 10 all-white bags and 10 all-black 
bags; (iii) posterior distributions after observing 20 mixed bags inspired by the obesity condition of the Barratos task. After observing 
20 bags that are either all white or all black, the model realizes that most bags are near-uniform in color (α is small), and that 
about half of these bags are black (β1 is around 0.5). These posterior distributions allow the model to predict that the proportion 
of black marbles in the new, sparsely observed bag ( ) is very close to 1. After observing 20 mixed bags, the model realizes 
that around 25% of marbles are black (β1 is around 0.25), and that roughly 25% of the marbles in each individual bag are black 
(α is high). These posterior distributions allow the model to predict that the new, sparsely observed bag is likely to contain more 
white marbles than black marbles (  is not close to 1). (b) Generalizations of a conventional Bayesian model that learns only 
at the level of θθθθ (α and ββββ are fixed). The model does not generalize correctly to new, sparsely observed bags: since α and ββββ are 
fixed, observing 20 previous bags provides no information about a new bag, and the posterior distributions on  are identical 
for cases (ii) and (iii).

θ1
new

θ1
new

θ1
new
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on (α, ββββ) given the observed data. Figures 3a.ii and 3a.iii
show posterior distributions on log(α) and ββββ for two sets
of counts. Inferences about θθθθ i, the color distribution of
bag i, can be computed by calculating the mean prediction
made by all pairs (α, ββββ) in the sample. Note that this
inference scheme is merely a convenient way of computing
the predictions of  our computational theory. Any
computational theory can be implemented in many ways,
and the particular implementation we have chosen is not
intended as a process model.

Modeling inductive reasoning

Since Goodman, psychologists have confirmed that
children (Macario, Shipley & Billman, 1990) and adults
(Nisbett, Krantz, Jepson & Kunda, 1983) have over-
hypotheses about feature variability, and use them to make
inductive leaps given very sparse data. We provide an
initial demonstration of our model using data inspired
by one of the tasks of Nisbett et al. (1983). As part of
this task, participants were asked to imagine that they
were exploring an island in the Southeastern Pacific, that
they had encountered a single member of the Barratos
tribe, and that this tribesman was brown and obese.
Based on this single example, participants concluded
that most Barratos were brown, but gave a much lower
estimate of the proportion of obese Barratos (Figure 4).
When asked to justify their responses, participants often
said that tribespeople were homogeneous with respect to

color but heterogeneous with respect to body weight
(Nisbett et al., 1983).

To apply our model to this task, we replace bags of
marbles with tribes. Suppose we have observed 20
members from each of 20 tribes. Half  the tribes are
brown and the other half  are white, but all of the indi-
viduals in a given tribe have the same skin color. Given
these data, the posterior distribution on α indicates that
skin color tends to be homogeneous within tribes (i.e. α
is probably small) (Figure 3a.ii). Learning that α is small
allows the model to make strong predictions about a
sparsely observed new tribe: having observed a single,
brown-skinned member of  a new tribe, the posterior
distribution on θθθθnew indicates that most members of the
tribe are likely to be brown (Figures 3a.ii and 4). Note
that the posterior distribution on θθθθnew is almost as
sharply peaked as the posterior distribution on θθθθ11: the
model has realized that observing one member of a new
tribe is almost as informative as observing 20 members
of that tribe.

Suppose now that obesity is a feature that varies
within tribes: a quarter of the 20 tribes observed have an
obesity rate of 10%, and the remaining quarters have
rates of 20%, 30%, and 40%. Obesity is represented in
our model as a second binary feature, and the posterior
distributions on α and ββββ (Figure 3a.iii) indicate that
obesity varies within tribes (α is high), and that the base
rate of obesity is around 25% (β1 is around 0.25). Again,
we can use these posterior distributions to make predictions
about a new tribe, and now the model requires many
observations before it concludes that most members of
the new tribe are obese (Figure 4). Unlike the case in
Figure 3a.ii, the model has learned that a single obser-
vation of a new tribe is not very informative, and the
distribution on θθθθnew is now similar to the average of the
θθθθ distributions for all previously observed tribes.

Accurate predictions about a new tribe depend critically
on learning at both level 1 and level 2 (Figure 1a).
Learning at level 1 is needed to incorporate the observation
that the new tribe has at least one obese, brown-skinned
member. Learning at level 2 is needed to discover that
skin color is homogeneous within tribes but that obesity
is not, and to discover the average rate of obesity across
many tribes. Figure 3b shows inferences drawn by an
alternative model that is unable to discover overhypotheses
– instead, we fix α and ββββ to their expected values under
the prior distributions used by our model. Since it cannot
learn at level 2, this alternative model cannot incorporate
any information about the 20 previous tribes when
reasoning about a new tribe. As a result, it makes identical
inferences about skin color and obesity – note that the
distribution on θθθθnew is the same in Figures 3b.ii and 3b.iii.
Note also that the mean of this distribution (0.75) is

Figure 4 Generalizations about a new tribe after observing 1, 
3, or 20 obese, brown-skinned individuals from that tribe. 
Human generalizations are replotted from Nisbett et al. (1983). 
For each set of observations, our model learns a distribution 
over the feature proportions θθθθ new for a new tribe (Figure 3a). 
Plotted here are the means of those distributions. A single 
observation allows the model to predict that most individuals 
in the new tribe have brown skin, but many more observations 
are needed before the model concludes that most tribe 
members are obese.
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lower than the mean of the distribution in Figure 3a.ii
(0.99) – both models predict that most members of the
new tribe have brown skin, but our model alone accounts
for the human judgment that almost all members of the
new tribe have brown skin (Figure 4).

Learning the shape bias

The Barratos task does not address an important kind
of reasoning that overhypotheses support: reasoning
about new feature values along known dimensions.
Based on the data in Figure 1a, a learner could acquire
at least two different overhypotheses: the first states that
the marbles in each bag are uniform along the dimen-
sion of color, and the second states that the marbles in
each bag are either all white or all black. One way to
distinguish between these possibilities is to show the
learner that a single green marble is drawn from a new
bag. A learner with the first overhypothesis will predict
that all marbles in the new bag are green, but a learner
with the second overhypothesis will be lost.

There are many real-world problems that involve
inferences about novel features. Children know, for
example, that animals of the same species tend to make
the same sound. Observing one horse neigh is enough to
conclude that most horses neigh, even though a child may
never have heard an animal neigh before (Shipley, 1993).
Similarly, by the age of 24 months children show a
‘shape bias’: they know that shape tends to be homoge-
neous within object categories. Given a single exemplar
of a novel object category, children extend the category
label to similarly shaped objects ahead of objects that
share the same texture or color as the exemplar (Heibeck
& Markman, 1987; Landau, Smith & Jones, 1988).

The model in Figure 1a deals naturally with inferences
like these. We illustrate using stimuli inspired by the
work of Smith et al. (2002). In their first experiment,
these authors trained 17-month-olds on two exemplars
from each of four novel categories. Novel names (e.g.
‘zup’) were provided for each category, and the
experimenter used phrases like ‘this is a zup – let’s put
the zups in the wagon’. Within each category, the two
exemplars had the same shape but differed in size,
texture and color (Figure 5a). After eight weeks of
training, the authors tested first-order generalization by
presenting T1, an exemplar from one of  the training
categories, and asking children to choose another object
from the same category as T1. Three choice objects were
provided, each of which matched T1 in exactly one feature
(shape, texture or color) (Figure 5b). Children preferred
the shape match, showing that they were sensitive to
feature distributions within a known category. Smith

et al. (2002) also tested second-order generalization by
presenting children with T2, an exemplar from a novel
category (Figure 5c). Again, children preferred the shape
match, revealing knowledge that shape in general is a
reliable indicator of category membership. Note that this
result depends critically on the training summarized by
Figure 5a: 19-month-olds do not normally reveal a
shape bias on tests of second-order generalization.

We supplied our model with counts yi computed from
the feature vectors in Figure 5a. For example, y1 indicates
that the data for category 1 include two observations
of shape value 1, one observation of texture value 1, one
observation of  texture value 2, and so on. The key

Figure 5 Learning the shape bias. (a) Training data based on 
Smith et al. (2002). Each column represents an object, and 
there are 10 possible colors, textures, and shapes, and 2 
possible sizes. (b) First-order generalization was tested by 
presenting the model with exemplar T1, and asking it to choose 
which of three objects (a shape match, a texture match and a 
color match) was most likely to belong to the same category 
as T1. (c) Second-order generalization was tested using T2, an 
exemplar of a category that was not seen during training. 
(d) Model predictions for both generalization tasks. Each bar 
represents the probability that a choice object belongs to the 
same category as the test exemplar (probabilities have been 
normalized so that they sum to 1 across each set of choice 
objects). The model makes exact predictions about these 
probabilities: we computed 30 estimates of these predictions, 
and the error bars represent the standard error of the mean.
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modeling step is to allow for more values along each
dimension than appear in the training set. This policy
allows the model to handle shapes, colors and textures it
has never seen during training, but assumes that the
model is able to recognize a novel shape as a kind of
shape, a novel color as a kind of color, and so on. We
allowed for 10 shapes, 10 colors, 10 textures and two
sizes: for example, the shape component of y1 indicates
that the observed exemplars of category 1 include two
objects with shape value 1 and no objects with shape
values 2 through 10.

Figure 5d shows the patterns of generalization predicted
by the model. Smith et al. (2002) report that the shape
match was chosen 88% (66%) of the time in the test of
first-order generalization, and 70% (65%) of  the time
in the second-order task (percentages in parentheses
represent results when the task was replicated as part of
Experiment 2). Our model reproduces this general
pattern: shape matches are preferred in both cases, and
are preferred slightly more strongly in the test of
first-order generalization.

Smith et al. (2002) also measured real-world general-
ization by tracking vocabulary growth over an 8-week
period. They report that experience with the eight exemplars
in Figure 5a led to a significant increase in the number
of object names used by children. Our model helps to
explain this striking result. Even though the training set
includes only four categories, the results in Figure 5b
show that it contains enough statistical information to
establish or reinforce the shape bias, which can then support
word learning in the real world. Similarly, our model
explains why providing only two exemplars per category
is sufficient. In fact, if  the total number of exemplars is
fixed, our model predicts that the best way to teach the
shape bias is to provide just two exemplars per category.
We illustrate by returning to the marbles scenario.

Each point in Figure 6a represents a simulation where
64 observations of marbles are evenly distributed over
some number of bags. The marbles drawn from any
given bag are uniform in color – black for half  of the
bags and white for the others. When 32 observations are
provided for each of two bags (Figure 6b.i), the model is
relatively certain about the color distributions of those
bags, but cannot draw strong conclusions about the
homogeneity of bags in general. When two observations
are provided for each of 32 bags (Figure 6b.ii), the evid-
ence about the composition of any single bag is weaker,
but taken together, these observations provide strong
support for the idea that α is low and most bags are
homogeneous. When just one observation is provided for
each of 64 bags, the model has no information about
color variability within bags, and the posterior distribution
on α is identical to the prior on α, which has a mean

value of 1. If  the total number of observations is fixed,
Figure 6a suggests that the best way to teach a learner
that bags are homogeneous in general is to provide two
observations for as many bags as possible. The U-shaped
curve in Figure 6a is a novel prediction of our model,
and could be tested in developmental experiments.

At least three outcomes are possible when learning
proceeds in parallel at levels 1 and 2. Figure 6b.i is a case
where the learner is more confident about level 1 knowledge
than level 2 knowledge: note that the distributions for
the two individual bags (θθθθ1 and θθθθ2) are more tightly
peaked than the distributions on α and β, which capture
knowledge about bags in general. Figure 6b.ii is a case
where the learner is relatively confident about the values
of the variables at both levels. Figure 6b.iii is a case where
the learner is more confident about level 2 than level 1.
In this case, two observations are provided for each of
32 bags: 22 of the observed pairs are mixed, and there
are five white pairs and five black pairs. The model is now
relatively uncertain about the color distribution of any
individual bag, but relatively certain about the values of
α and ββββ. A second prediction of our model, then, is that
learning can sometimes be faster at level 2 than at level
1. This prediction distinguishes the hierarchical Bayesian
approach from bottom-up approaches to learning over-
hypotheses (e.g. the four-step method of Smith et al., 2002),
which suggest that some of the variables at level 1 must
be securely known before learning can take place at level 2.

Although our model provides some insight into the
findings of Smith et al. (2002), it does not account for
all of their results. Their second experiment includes a
no-name condition where children received the same
training as before (Figure 5a) except that category labels
were not provided. Instead of naming the training
objects, the experimenter used phrases like ‘here is one,
here is another – let’s put them both in the wagon’.
Children in this condition showed first-order but not
second-order generalization, which supports the view
that the shape bias reflects attention to shape in the
context of naming (Smith, Jones & Landau, 1996). An
alternative view is that the shape bias is not specifically
linguistic: shape is important not because it is linked to
naming in particular, but because it is a reliable cue to
category membership (Ward, Becker, Hass & Vela, 1991;
Bloom, 2000). Our model is consistent with this second
view, and predicts that learning in the no-name condition
should not have been impaired provided that children
clearly understood which training objects belonged to
the same category. This discrepancy between model
predictions and empirical results calls for further work
on both sides. On the modeling side, it is important to
develop hierarchical models that allow an explicit and
privileged role for linguistic information. On the empirical
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side, it seems possible that children in the no-name condition
did not achieve second-order generalization because
they did not realize that each pair of identically shaped
objects was supposed to represent a coherent category.2

Observing associations between similarly shaped objects
may have led them only to conclude that shape was a

salient feature of each of these objects, which would have
been enough for them to pass the test of  first-order
generalization.

Discovering ontological kinds

The model in Figure 1a is a simple hierarchical model
that acquires something like the shape bias, but to match
the capacities of a child it is necessary to apply the shape
bias selectively – to object categories, for example, but
not to substance categories. Selective application of the
shape bias appears to demand knowledge that categories

2 For those who support an essentialist view of categories (Medin &
Ortony, 1989; Bloom, 2000), the issue at stake is whether the identic-
ally shaped objects were believed to have the same essence. A shared
name is one indication that two objects have the same essence, but
other indications are possible – for example, children might be told
‘Here’s one and here’s another. Look, they are both the same kind of
thing. I wonder what they’re called.’

Figure 6 (a) Mean α values after observing 32 white marbles and 32 black marbles divided evenly across some number of 
homogeneous bags. The model is most confident that bags in general are homogeneous (i.e. α is low) when given two samples 
from each of 32 bags. (b) Three possible outcomes when learning occurs simultaneously at level 1 and level 2. (i) After observing 
two homogeneous bags, the model is more certain about the variables at level 1 than the variables at level 2. (ii) After observing 
pairs of marbles from 32 homogeneous bags, the model is fairly certain about both levels. (iii) After observing pairs of marbles 
from 32 bags (five white pairs, 22 mixed pairs, and five black pairs), the model is more certain about level 2 than level 1.



316 Charles Kemp et al.

© 2007 The Authors. Journal compilation © 2007 Blackwell Publishing Ltd.

are grouped into ontological kinds and that there are
different patterns of feature variability within each kind.
Before the age of 3, for instance, children appear to
know that shape tends to be homogeneous within object
categories but heterogeneous within substance categories
(Soja, Carey & Spelke, 1991; Imai, Gentner & Uchida,
1994; Samuelson & Smith, 1999), that color tends to be
homogeneous within substance categories but hetero-
geneous within object categories (Landau et al., 1988; Soja
et al., 1991), and that both shape and texture tend to be
homogeneous within animate categories (Jones, Smith &
Landau, 1991).

Figure 1b shows how we can give our model the abil-
ity to discover ontological kinds. The model assumes
that categories may be grouped into several ontological
kinds, and that there is a separate αk and ββββk for each onto-
logical kind k. The model, however, is not told which
categories belong to the same kind, and is not even told
how many different kinds it should look for. Instead, we
give it a prior distribution on the partition of categories
into kinds (see the Appendix). This prior assigns some
probability to all possible category partitions, but favors
the simpler partitions – those that use a small number of
kinds. To fit the model to data, we again assume that
feature counts y are observed for one or more categories.
Our goal is to simultaneously infer the partition of cat-
egories into kinds, along with the αk and ββββk for each kind
k and the feature distribution θθθθi for each category. The
Appendix describes how these inferences can be carried out.

Jones and Smith (2002) have shown that training young
children on a handful of suitably structured categories
can promote the acquisition of ontological knowledge.
We gave our model a data set of comparable size. During
training, the model saw two exemplars from each of four
categories: two object categories and two substance
categories (Figure 7a). Exemplars of each object category
were solid, matched in shape, and differed in material
and size. Exemplars of each substance category were non-
solid, matched in material, and differed in shape and
size. Second-order generalization was tested using exem-
plars from novel categories – one test exemplar (S ) was
solid and the other (N) was not (Figure 7b). Figure 7c
shows that the model chooses a shape match for the solid
exemplar and a material match for the non-solid exemplar.

Figure 7d confirms that the model correctly groups
the stimuli into two ontological kinds: object categories
and substance categories. This discovery is based on the
characteristic features of ontological kinds (ββββ) as well as
patterns of feature variability within each kind (α). If  the
object categories are grouped into kind k, αk indicates
that shape is homogeneous within categories of that
kind, and ββββk indicates that categories of that kind tend
to be solid. The ββββ parameter, then, is responsible for the

inference that the category including S should be
grouped with the two object categories, since all three
categories contain solid objects.

The results in Figure 7 predict that a training regime
with a small number of categories and exemplars should
allow children to simultaneously acquire a shape bias for
solids and a material bias for substances. Samuelson

Figure 7 Learning a shape bias for solids and a material bias 
for non-solids. (a) Training data. (b) Second-order 
generalization was tested using solid and non-solid exemplars 
(S, N). In each case, two choice objects were provided – a 
shape match and a material match. (c) The model chooses the 
shape match given the solid exemplar and the material match 
given the non-solid exemplar. The model makes exact 
predictions about the probabilities plotted, and the error bars 
represent standard error across 8 estimates of these 
probabilities. (d) The model groups the categories into two 
kinds: objects (categories 1, 2 and 5) and substances (categories 
3, 4 and 6). Entry (i, j) in the matrix is the posterior probability 
that categories i and j belong to the same ontological kind 
(light colors indicate high probabilities).
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(2002) ran a related study where she attempted to teach
one group of children a precocious shape bias and
another a precocious material bias. Only the shape bias
was learned, suggesting that the shape bias is easier to
teach than the material bias, but leaving open the pos-
sibility that the material bias could have been acquired
with more training. Simultaneously teaching a shape
bias for solids and a material bias for substances may
raise some difficult practical challenges, but Jones and
Smith (2002) have shown that children can simultaneously
learn two kind-specific biases. By the end of their training
study, children had learned that names for animate
exemplars (exemplars with eyes) should be generalized
according to shape and texture, and that names for
objects (exemplars without eyes) should be generalized
only according to shape. Our model accounts for these
results: given the data provided to the children in these
experiments, it discovers that there are two ontological
kinds, and makes selective generalizations depending on
whether or not a novel exemplar has eyes.

Related models

Our models address tasks that have been previously
modeled by Colunga and Smith (2005). These authors
develop a connectionist network that acquires a shape
bias for solid objects and a material bias for non-solid
objects. The network uses a set of  hidden nodes to
capture high-order correlations between nodes representing
the shape, material, and solidity of a collection of training
objects, and generates results similar to Figure 7c when
asked to make predictions about novel objects. Our
model is similar to this connectionist model in several
respects: both models show that abstract knowledge can
be acquired, and both models are statistical, which
allows them to deal with noise and uncertainty and to make
graded generalizations. These models, however, differ in
at least two important respects.

First, the two models aim to provide different kinds of
explanations. Our contribution is entirely at the level
of computational theory (Marr, 1982), and we have not
attempted to specify the psychological mechanisms by
which our model might be implemented. Colunga and
Smith (2005) describe a process model that uses a
biologically inspired learning algorithm, but provide no
formal description of the problem to be solved. Their
network can probably be viewed as an approximate
implementation of some computational theory,3 but the

underlying computational theory may not be ideal for
the problem of word learning. For instance, it is not
clear that the network adequately captures the notion of
a category. In tests of second-order generalization (e.g.
Figure 7c), our model is able to compute the probability
that a choice object belongs to the same category as the
test exemplar. Colunga and Smith (2005) compute
model predictions by comparing the similarity between
hidden-layer activations for the choice object and the
test exemplar. Objects in the same category may often
turn out to have similar representations, but there are some
well-known cases where similarity and categorization
diverge (Keil, 1989; Rips, 1989).

A second limitation of the connectionist approach is
that it does not extend naturally to contexts where
structured representations are required. We defined models
that generate scalars (α) and vectors (ββββ, θθθθ, y), but
hierarchical probabilistic models can generate many
other kinds of representations, including taxonomies (Kemp,
Perfors & Tenenbaum, 2004), ontologies (Schmidt, Kemp
& Tenenbaum, 2006), causal networks (Mansinghka,
Kemp, Tenenbaum & Griffiths, 2006), parse trees
(Perfors, Tenenbaum & Regier, 2006), and logical theories
(Milch, Marthi, Russell, Sontag, Ong & Kolobov, 2005).
Many overhypotheses correspond to constraints on struc-
tured representations: for example, the M-constraint
states that ontological knowledge is better described by a
tree structure than by a set of  arbitrarily overlapping
clusters (Keil, 1979), and Universal Grammar may include
many overhypotheses that constrain the structure of
possible grammars. Hierarchical Bayesian models may
eventually explain how overhypotheses like these might
be acquired, and Schmidt et al. (2006) and Perfors et al.
(2006) describe some initial steps towards this goal.

Previous researchers have developed Bayesian models
of categorization (Anderson, 1991) and word learning
(Tenenbaum & Xu, 2000), and our work continues in
this tradition. The hierarchical approach, however, attempts
to address a problem raised by most Bayesian models
of cognition. In terms of our hierarchical framework, a
conventional Bayesian model incorporates two levels of
knowledge: the elements in its hypothesis space repre-
sent level 1 knowledge, and the prior (generally fixed)
represents knowledge at level 2. One common reservation
about Bayesian models is that different priors account
for different patterns of data, and the success of any
given Bayesian model depends critically on the modeler’s
ability to choose the right prior. Hierarchical models dis-
arm this objection by showing that knowledge at level 2
need not be specified in advance, but can be learned
from raw data.

Hierarchical Bayesian models (HBMs) still rely on
some prior knowledge, since the prior at the highest level

3 The network used by Colunga and Smith (2005) is related to a Boltz-
mann machine (Ackley, Hinton & Sejnowski, 1985), which is an exact
implementation of a known computational theory.
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must be specified in advance. The ultimate goal, however,
is to design models where this prior is simple enough to
be unobjectionable. Our models demonstrate that HBMs
can sometimes rely on much simpler priors than conven-
tional Bayesian models. If  we were only interested in
inferences about level 1 knowledge (inferences about the
θθθθi for each bag i), α and ββββ (Figure 1a) would not be
essential: in other words, a conventional Bayesian model
could mimic the predictions of our model if  it used the
right prior distribution on the set {θθθθi}. If  specified
directly, however, this prior would look extremely com-
plicated – much more complicated, for example, than
the prior used by the conventional model in Figure 3b,
which assumes that all the θθθθi are independent. We
avoided this problem by specifying the prior on {θθθθi}
indirectly. We introduced an extra layer of abstraction –
the layer including α and ββββ – and placed simple priors
on these variables. These simple distributions on α and
ββββ induce a complicated prior distribution on {θθθθi} – the
same distribution that a conventional Bayesian model
would have to specify directly.

Beyond feature variability

In order to establish the generality of the hierarchical
Bayesian approach to development, it will be necessary
to develop HBMs that account for the acquisition of
overhypotheses in many different domains. Much work
remains to be done, but HBMs have recently been applied
to several different problems. Perfors et al. (2006) present
a hierarchical model that discovers whether a corpus
of child-directed speech is better described by a regular
grammar or a context-free grammar. Discovering
abstract properties of the underlying grammar may help
language learners zero in on a specific grammar that
accounts well for the data they have observed. The M-
constraint (Keil, 1979) may help children learn which
entities and predicates can be sensibly paired, and Schmidt
et al. (2006) have argued that this constraint may be
learnable from raw data. Finally, knowledge about causal
types (e.g. diseases and symptoms) and relationships
between these types (diseases cause symptoms) places
useful constraints on causal learning: for instance, a
learner need not consider causal networks that state that
lung cancer causes smoking. Mansinghka et al. (2006)
describe an HBM that uses raw co-occurrence data to
discover abstract knowledge about causal types.

Future work should also explore the ability of HBMs
to learn simultaneously at several levels of abstraction.
Figure 6b illustrates three possible patterns of learning:
the third makes the surprising prediction that abstract
knowledge can sometimes be acquired faster than

knowledge at lower levels of abstraction. When abstract
knowledge is available very early in development, a natural
conclusion is that the knowledge is innate. HBMs suggest
a possible alternative: in some cases, abstract knowledge
may appear to be innate only because it is acquired
much faster than knowledge at lower levels of abstrac-
tion. This possibility may apply in situations where a
child has access to a large number of sparse or noisy
observations – any individual observation may be diffi-
cult to interpret, but taken together they may provide
strong support for a general conclusion. For example, a
hierarchical Bayesian model of grammar induction may
be able to explain how a child becomes confident about
some property of a grammar even though most of the
individual sentences that support this conclusion are
poorly understood. Similarly, a hierarchical approach
may explain how a child can learn that visual objects are
cohesive, bounded and rigid (cf. Spelke, 1990) before
developing a detailed understanding of the appearance
and motion of any individual object.

Conclusion

The hierarchical Bayesian approach is familiar to statis-
ticians (Good, 1980), but is just beginning to be explored
as a framework for modeling human learning and reason-
ing (Tenenbaum, Griffiths & Kemp, 2006; Lee, 2006).
Ultimately, hierarchical Bayesian models may help to
explain the acquisition of overhypotheses across a broad
range of domains. We focused on overhypotheses about
feature variability, and presented HBMs that help explain
the acquisition of the shape bias, and the acquisition of
overhypotheses about feature variability within ontological
kinds.

Although we suggested that overhypotheses can be learned
by HBMs, we do not claim that overhypotheses can be
generated out of thin air. Any HBM will assume that the
process by which each level is generated from the level
above is known, and that the prior at the topmost level
is provided. Any account of induction must rely on some
initial knowledge: the real question for a learning frame-
work is whether it allows us to build models that require
no initial assumptions beyond those we are willing to
make. Whether the hierarchical Bayesian approach will
meet this challenge is not yet clear, but it deserves to be
put to the test.

Appendix

The model in Figure 1a is known to statisticians as a
Dirichlet-multinomial model (Gelman et al., 2003).
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Using statistical notation, it can be written as:

α ∼ Exponential(λ)

ββββ ∼ Dirichlet(1)

θθθθi ∼ Dirichlet(αββββ)

yi | ni ∼ Multinomial(θθθθi)

where ni is the number of observations for bag i.
To compute the predictions of this model, we estimate

p(α, ββββ | y) using numerical integration or a Markov
chain Monte Carlo (MCMC) scheme. Inferences about
the θθθθi are computed by integrating out α and ββββ:

Our MCMC sampler uses Gaussian proposals on
log(α), and proposals for ββββ are drawn from a Dirichlet
distribution with the current ββββ as its mean. The results
in Figure 5 represent averages across 30 Markov chains,
each of which was run for 50,000 iterations (1000 were
discarded as burn-in). The model predictions in Figures 3,
4 and 6 were computed using numerical integration.

The model in Figure 1b partitions the categories into
one or more ontological kinds. Each possible partition
can be represented by a vector z: the partition in 1b is
represented by the vector [1, 1, 1, 2, 2, 2] which indicates
that the first three categories belong to one ontological
kind, and the remaining three belong to a second kind.
Our prior distribution on z is induced by the Chinese
Restaurant Process (CRP; Aldous, 1985):

where zi is the kind assignment for category i, na is the
number of categories previously assigned to kind a, and
γ is a hyperparameter (we set γ = 0.5). This process
prefers to assign new categories to kinds which already
have many members, and therefore favors partitions that
use a small number of kinds.

The entire model in Figure 1b can be written as follows:

z ∼ CRP(γ)

αk ∼ Exponential(λ)

ββββk ∼ Dirichlet(1)

θθθθi ∼ Dirichlet( )

yi | ni ∼ Multinomial(θθθθi)

If z is known, this model reduces to several independent
copies of the model in Figure 1a, and model predictions

(including p(θθθθi | z, y)) can be computed using the tech-
niques already described. Since z is unknown, we inte-
grate over this quantity:

To compute this sum we use P(z | y) ∝ P(y | z)P(z),
where P(z) is the CRP prior on z. Computing P(y | z)
reduces to the problem of computing several marginal
likelihoods

for the model in Figure 1a. We estimate each of these
integrals by drawing 10,000 samples from the prior p(α, ββββ).
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