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Abstract

Everyday inductive reasoning draws on many kinds of knowledge, including
knowledge about relationships between properties and knowledge about relation-
ships between objects. Previous accounts of inductive reasoning generally focus
on just one kind of knowledge: models of causal reasoning often focus on re-
lationships between properties, and models of similarity-based reasoning often
focus on similarity relationships between objects. We present a Bayesian model
of inductive reasoning that incorporates both kinds of knowledge, and show that
it accounts well for human inferences about the properties of biological species.

1 Introduction

Will that berry taste good? Is that table strong enough to sit on? Predicting whether an object has an
unobserved property is among the most basic of all inductive problems. Many kinds of knowledge
appear to be relevant: different researchers emphasize the role of causal knowledge, similarity, cate-
gory judgments, associations, analogical mappings, scripts, and intuitive theories, and each of these
approaches accounts for an important subset of everyday inferences. Taken in isolation, however,
each of these approaches is fundamentally limited. Humans draw on multiple kinds of knowledge
and integrate them flexibly when required, and eventually our models should attempt to match this
ability [1]. As an initial step towards this goal, we present a model of inductive reasoning that
is sensitive both to causal relationships between properties and to similarity relationships between
objects.

The inductive problem we consider can be formalized as the problem of filling in missing entries
in an object-property matrix (Figure 1). Previous accounts of inductive reasoning generally address
some version of this problem. Models of causal reasoning [2] usually focus on relationships be-
tween properties (Figure 1a): if animal A has wings, for instance, it is likely that animal A can fly.
Similarity-based models [3, 4, 5] usually focus on relationships between objects (Figure 1b): if a
duck carries gene X , a goose is probably more likely than a pig to carry the same gene. Previous
models, however, cannot account for inferences that rely on similarity and causality: if a duck car-
ries gene X and gene X causes enzyme Y to be expressed, it is likely that a goose expresses enzyme
Y (Figure 1c). We develop a unifying model that handles inferences like this, and that subsumes
previous probabilistic approaches to causal reasoning [2] and similarity-based reasoning [5, 6].

Our formal framework overcomes some serious limitations of the two approaches it subsumes. Ap-
proaches that rely on causal graphical models typically assume that the feature vectors of any two
objects (any two rows of the matrix in Figure 1a) are conditionally independent given a causal net-
work over the features. Suppose, for example, that the rows of the matrix correspond to people and
the causal network states that smoking leads to lung cancer with probability 0.3. Suppose that Tim,
Tom and Zach are smokers, that Tim and Tom are identical twins, and that Tim has lung cancer. The
assumption of conditional independence implies that Tom and Zach are equally likely to suffer from
long cancer, a conclusion that seems unsatisfactory. The assumption is false because of variables
that are unknown but causally relevant—variables capturing unknown biological and environmen-
tal factors that mediate the relationship between smoking and disease. Dealing with these unknown
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Figure 1: (a) Models of causal reasoning generally assume that the rows of an object-feature matrix
are conditionally independent given a causal structure over the features. These models are often
used to make predictions about unobserved features of novel objects. (b) Models of similarity-
based reasoning generally assume that columns of the matrix are conditionally independent given a
similarity structure over the objects. These models are often used to make predictions about novel
features. (c) We develop a generative model for object-feature matrices that incorporates causal
relationships between features and similarity relationships between objects. The model uses both
kinds of information to make predictions about matrices with missing entries.

variables is difficult, but we suggest that knowledge about similarity between objects can help. Since
Tim is more similar to Tom than Zach, our model correctly predicts that Tom is more likely to have
lung cancer than Zach.

Previous models of similarity-based reasoning [5, 6] also suffer from a restrictive assumption of
conditional independence. This time the assumption states that features (columns of the matrix in
Figure 1b) are conditionally independent given information about the similarity between objects.
Empirical tests of similarity-based models often attempt to satisfy this assumption by using blank
properties—subjects, for example, might be told that coyotes have property P, and asked to judge
the probability that foxes have property P [3]. To a first approximation, inferences in tasks like this
conform to judgments of similarity: subjects conclude, for example, that foxes are more likely to
have property P than mice, since coyotes are more similar to foxes than mice. People, however,
find it natural to reason about properties that are linked to familiar properties, and that therefore
violate the assumption of conditional independence. Suppose, for instance, you learn that desert
foxes have skin that is resistant to sunburn. It now seems that desert rats are more likely to share this
property than arctic foxes, even though desert foxes are more similar in general to arctic foxes than
to desert rats. Our model captures inferences like this by incorporating causal relationships between
properties: in this case, having sunburn-resistant skin is linked to the property of living in the desert.

Limiting assumptions of conditional independence can be avoided by specifying a joint distribution
on an entire object-property matrix. Our model uses a distribution that is sensitive both to causal
relationships between properties and to similarity relationships between objects. We know of no
previous models that attempt to combine causality and similarity, and one set of experiments that
has been taken to suggest that people find it difficult to combine these sources of information [7].
After introducing our model, we present two experiments designed to test it. The results suggest
that people are able to combine causality with similarity, and that our model accounts well for this
capacity.

2 A generative model for object-feature matrices

Consider first a probabilistic approach to similarity-based reasoning. Assume that So is an object
structure: a graphical model that captures relationships between a known set of objects (Figure 1b).
Suppose, for instance, that the objects include a mouse, a rat, a squirrel and a sheep (o1 through o4).
So can be viewed as a graphical model that captures phylogenetic relationships, or as a formalization
of the intuitive similarity between these animals. Given some feature of interest, the feature values
for all objects can be collected into an object vector vo and So specifies a distribution P (vo) on these
vectors.



We work with the case where (So, λ) is a tree-structured graphical model of the sort previously used
by methods for Bayesian phylogenetics [8] and cognitive models of property induction [5, 6]. The
objects lie at the leaves of the tree, and we assume that object vectors are binary vectors generated
by a mutation process over the tree. This process has a parameter, λ, that represents the base rate of
a novel feature—the expected proportion of objects with that feature. For instance, if λ is low, the
model (So, λ) will predict that a novel feature will probably not be found in any of the animals, but
if the feature does occur in exactly two of the animals, the mouse and the rat are a more likely pair
than the mouse and the sheep.

The mutation process can be formalized as a continuous-time Markov process with two states (off
and on) and with infinitesimal matrix:

Q =

[

−λ λ
1 − λ −(1 − λ)

]

We can generate object vectors from this model by imagining a binary feature spreading out over the
tree from root to leaves. The feature is on at the root with probability λ, and the feature may switch
states at any point along any branch. The parameter λ determines how easy it is to move between
the on state and the off state. If λ is high, it will be easy for the Markov process to enter the on state,
and difficult for it to leave once it is there.

Consider now a probabilistic approach to causal reasoning. Assume that Sf is a feature structure:
a graphical model that captures relationships between a known set of features (Figure 1a). The
features, for instance, may correspond to enzymes, and Sf may capture the causal relationships
between these enzymes. One possible structure states that enzyme f1 is involved in the production
of enzyme f2, which is in turn involved in the production of enzyme f3. The feature values for any
given object can be collected into a feature vector vf and Sf specifies a distribution P (vf ) on these
vectors.

Suppose now that we are interested in a model that combines the knowledge represented by Sf and
So (Figure 1c). Given that the mouse expresses enzyme f1, for instance, a combined model should
predict that rats are more likely than squirrels to express enzyme f2. Formally, we seek a distribution
P (M), where M is an object-feature matrix, and P (M) is sensitive to both the relationships between
features and the relationships between animals. Given this distribution, Bayesian inference can be
used to make predictions about the missing entries in a partially observed matrix.

If the features in Sf happen to be independent (Figure 1b), we can assume that column i of the
matrix is generated by (So, λi), where λi is the base rate of fi. Consider then the case where
Sf captures causal relationships between the features (Figure 1c). These causal relationships will
typically depend on several hidden variables. Causal relationships between enzymes, for instance,
are likely to depend on other biological variables, and the causal link between smoking and lung
cancer is mediated by many genetic and environmental variables. Often little is known about these
hidden variables, but to a first approximation we can assume that they respect the similarity structure
So. In Figure 1c, for example, the unknown variables that mediate the relationship between f1 and
f2 are more likely to take the same value in o1 and o2 than in o1 and o4.

We formalize these intuitions by converting a probabilistic model Sf (Figure 2a) into an equivalent

model SD
f (Figure 2b) that uses a deterministic combination of independent random events. These

random events will include hidden but causally relevant variables. In Figure 2b, for example, the
model SD

f indicates that the effect e is deterministically present if the cause c is present and the

transmission mechanism t is active, or if there is a background cause b that activates e. The model
SD

f is equivalent to Sf in the sense that both models induce the same distribution over the variables

that appear in Sf . In general there will be many models SD
f that meet this condition, and there

are algorithms which convert Sf into one of these models [9]. For some applications it might be
desirable to integrate over all of these models, but here we attempt to choose the simplest—the
model SD

f with the fewest variables.

Given a commitment to a specific deterministic model, we assume that the root variables in SD
f are

independently generated over So. More precisely, suppose that the base rate of the ith variable in SD
f

is λi. The distribution P (M) we seek must meet two conditions (note that each candidate matrix M
now has a column for each variable in SD

f ). First, the marginal distribution on each row must match
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Figure 2: (a) A graphical model Sf that captures a probabilistic relationship between a cause c and

an effect e. (b) A deterministic model SD
f that induces the same joint distribution over c and e. t

indicates whether the mechanism of causal transmission between c and e is active, and b indicates
whether e is true owing to a background cause independent of c. All of the root variables (c, t
and b) are independent, and the remaining variables (e) are deterministically specified once the
root variables are fixed. (c) A graphical model created by combining SD

f with a tree-structured

representation of the similarity between three objects. The root variables in SD
f (c, t, and b) are

independently generated over the tree. Note that the arrows on the edges of the combined model
have been suppressed.

the distribution specified by SD
f . Second, if fi is a root variable in SD

f , the marginal distribution on

column i must match the distribution specified by (So, λi).

There is precisely one distribution P (M) that satisfies these conditions, and we can represent it
using a graphical model that we call the combined model. Suppose that there are n objects in So. To
create the combined model, we first introduce n copies of SD

f . For each root variable i in SD
f , we

now connect all copies of variable i according to the structure of So (Figure 2c). The resulting graph
provides the topology of the combined model, and the conditional probability distributions (CPDs)
are inherited from So and SD

f . Each node that belongs to the ith copy of So inherits a CPD from

(So, λi), and all remaining nodes inherit a (deterministic) CPD from Sf . Now that the distribution
P (M) is represented as a graphical model, standard inference techniques can be used to compute
the missing entries in a partially-observed matrix M . All results in this paper were computed using
the implementation of the junction tree algorithm included in the Bayes Net toolbox [10].

3 Experiments

When making inductive inferences, a rational agent should exploit all of the information avail-
able, including causal relationships between features and similarity relationships between objects.
Whether humans are able to meet this normative standard is not clear, and almost certainly varies
from task to task. On one hand, there are motivating examples like the case of the three smokers
where it seems natural to think about causal relationships and similarity relationships at the same
time. On the other hand, Rehder [7] argues that causal information tends to overwhelm similarity in-
formation, and supports this conclusion with data from several tasks involving artificial categories.
To help resolve these competing views, we designed several tasks where subjects were required
to simultaneously reason about causal relationships between enzymes and similarity relationships
between animals.

3.1 Experiment 1

Materials and Methods. 16 adults participated in this experiment. Subjects were asked to reason
about the presence of enzymes in a set of four animals: a mouse, a rat, a sheep, and a squirrel.
Each subject was trained on two causal structures, each of which involved three enzymes. Pseudo-
biological names like “dexotase” were used in the experiment, but here we will call the enzymes
f1, f2 and f3. In the chain condition, subjects were told that f3 is known to be produced by several
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Figure 3: Experiment 1: Behavioral data (column 1) and predictions for three models. (a) Results
for the chain condition. Known test results are marked with arrows: in task 1, subjects were told
only that the mouse had tested positive for f1, and in task 2 they were told in addition that the rat
had tested negative for f2. Error bars represent the standard error of the mean. (b) Results for the
common-effect condition.

pathways, and that the most common pathway begins with f1, which stimulates production of f2,
which in turn leads to the production of f3. In the common-effect condition, subjects were told
that f3 is known to be produced by several pathways, and that one of the most common pathways
involves f1 and the other involves f2.

To reinforce each causal structure, subjects were shown 20 cards representing animals from twenty
different mammal species (names of the species were not supplied). The card for each animal
represented whether that animal had tested positive for each of the three enzymes. The cards were
chosen to be representative of the distribution captured by a causal network with known structure
(chain or common-effect) and known parameterization. In the chain condition, for example, the
network was a noisy-or network with the form of a chain, where leak probabilities were set to 0.4
(f1) or 0.3 (f2 and f3), and the probability that each causal link was active was set to 0.7. After
subjects had studied the cards for as long as they liked, the cards were removed and subjects were
asked several questions about the enzymes (e.g. “you learn about a new mammal—how likely is it
that the mammal produces f3?”) The questions in this training phase were intended to encourage
subjects to reflect on the causal relationships between the enzymes.

In both conditions, subjects were told that they would be testing the four animals (mouse, rat, sheep
and squirrel) for each of the three enzymes. Each condition included two tasks. In the chain condi-
tion, subjects were told that the mouse had tested positive for f1, and asked to predict the outcome
of each remaining test (Figure 1c). Subjects were then told in addition that the rat had tested neg-
ative for f2, and again asked to predict the outcome of each remaining test. Note that this second
task requires subjects to integrate causal reasoning with similarity-based reasoning: causal reason-
ing predicts that the mouse has f2, and similarity-based reasoning predicts that it does not. In the
common-effect condition, subjects were told that the mouse had tested positive for f3, then told in
addition that the rat had tested negative for f2. Ratings were provided on a scale from 0 (very likely
to test negative) to 100 (very likely to test positive).

Results. Subjects used the 100 point scale very differently: in task 1 of each condition, some
subjects chose numbers between 80 and 100, and others chose numbers between 0 and 100. We



therefore converted each set of ratings to z-scores. Average z-scores are shown in the first column
of Figure 3, and the remaining columns show predictions for several models. In each case, model
predictions have been converted from probabilities to z-scores to allow a direct comparison with the
human data.

Our combined model uses a tree over the four animals and a causal network over the features. We
used the tree shown in Figure 1b, where objects o1 through o4 correspond to the mouse, the rat, the
squirrel and the sheep. The tree component of our model has one free-parameter—the total path
length of the tree. The smaller the path length, the more likely that all four animals have the same
feature values, and the greater the path length, the more likely that distant animals in the tree (e.g.
the mouse and the sheep) will have different feature values. All results reported here use the same
value of this parameter—the value that maximizes the average correlation achieved by our model
across Experiments 1 and 2. The causal component of our model includes no free parameters, since
we used the parameters of the network that generated the cards shown to subjects during the training
phase. Comparing the first two columns of Figure 3, we see that our combined model accounts well
for the human data.

Columns 3 and 4 of Figure 3 show model predictions when we remove the similarity component
(column 3) or the causal component (column 4) from our combined model. The model that uses the
causal network alone is described by [2], among others, and the model that uses the tree alone is
described by [6]. Both of these models miss qualitative trends evident in the human data. In task
1 of each condition, the causal model makes identical predictions about the rat, the squirrel and the
sheep: in task 1 of the chain condition, for example, it cannot use the similarity between the mouse
and the rat to predict that the rat is also likely to test positive for f1. In task 1 of each condition the
similarity model predicts that the unobserved features (f2 and f3 for the chain condition, and f1 and
f2 for the common-effect condition) are distributed identically across the four animals. In task 1 of
the chain condition, for example, the similarity model does not predict that the mouse is more likely
than the sheep to test positive for f2 and f3.

The limitations of the causal and similarity models suggest that some combination of causality and
similarity is necessary to account for our data. There are likely to be approaches other than our
combined model that account well for our data, but we suggest that accurate predictions will only
be achieved when the causal network and the similarity information are tightly integrated. Simply
averaging the predictions for the causal model and the similarity model will not suffice: in task 1 of
the chain condition, for example, both of these models predict that the rat and the sheep are equally
likely to test positive for f2, and computing an average across these models will result in the same
prediction.

3.2 Experiment 2

Our working hypothesis is that similarity and causality should be combined in most contexts. An
alternative hypothesis—the root-variables hypothesis—was suggested to us by Bob Rehder, and
states that similarity relationships are used only if some of the root variables in a causal structure Sf

are unobserved. For instance, similarity might have influenced inferences in the chain condition of
Experiment 1 only because the root variable f1 was never observed for all four animals.

The root-variables hypothesis should be correct in cases where all root variables in the true causal
structure are known. In Figure 2c, for instance, similarity no longer plays a role once the root vari-
ables are observed, since the remaining variables are deterministically specified. We are interested,
however, in cases where Sf may not contain all of the causally relevant variables, and where simi-
larity can help to make predictions about the effects of unobserved variables. Consider, for example,
the case of the three smokers, where Sf states that smoking causes lung cancer. Even though the
root variable is observed for Tim, Tom and Zach (all three are smokers), we still believe that Tom is
more likely to suffer from lung cancer than Zach having discovered that Tim has lung cancer. The
case of the three smokers therefore provides intuitive evidence against the root-variables hypothesis,
and we designed a related experiment to explore this hypothesis empirically.

Materials and Methods. Experiment 2 was similar to Experiment 1, except that the common-effect
condition was replaced by a common-cause condition. In the first task for each condition, subjects
were told only that the mouse had tested positive for f1. In the second task, subjects were told in
addition that the rat, the squirrel and the sheep had tested positive for f1, and that the mouse had
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Figure 4: Experiment 2: Behavioral data and predictions for three models. In task 2 of each condi-
tion, the root variable in the causal network (f1) is observed for all four animals.

tested negative for f2. Note that in the second task, values for the root variable (f1) were provided
for all animals. 18 adults participated in this experiment.

Results. Figure 4 shows mean z-scores for the subjects and for the four models described previously.
The judgments for the first task in each condition replicate the finding from Experiment 1 that
subjects combine causality and similarity when just one of the 12 animal-feature pairs is observed.
The results for the second task rule out the root-variables hypothesis. In the chain condition, for
example, the causal model predicts that the rat and the sheep are equally likely to test positive for
f2. Subjects predict that the rat is less likely than the sheep to test positive for f2, and our combined
model accounts for this prediction.

4 Discussion

We developed a model of inductive reasoning that is sensitive to causal relationships between fea-
tures and similarity relationships between objects, and demonstrated in two experiments that it pro-
vides a good account of human reasoning. Our model makes three contributions. First, it provides an
integrated view of two inductive problems—causal reasoning and similarity-based reasoning—that
are usually considered separately. Second, unlike previous accounts of causal reasoning, it acknowl-
edges the importance of unknown but causally relevant variables, and uses similarity to constrain
inferences about the effects of these variables. Third, unlike previous models of similarity-based
reasoning, our model can handle novel properties that are causally linked to known properties.

For expository convenience we have emphasized the distinction between causality and similarity,
but the notion of similarity needed by our approach will often have a causal interpretation. A tree-
structured taxonomy, for example, is a simple representation of the causal process that generated
biological species—the process of evolution. Our combined model can therefore be seen as a causal
model that takes both relationships between features and evolutionary relationships between species
into account. More generally, our framework can be seen as a method for building sophisticated
causal models, and our experiments suggest that these kinds of models will be needed to account for
the complexity and subtlety of human causal reasoning.



Other researchers have proposed strategies for combining probabilistic models [11], and some of
these methods may account well for our data. In particular, the product of experts approach [12]
should lead to predictions that are qualitatively similar to the predictions of our combined model.
Unlike our approach, a product of experts model is not a directed graphical model, and does not
support predictions about interventions. Neither of our experiments explored inferences about inter-
ventions, but an adequate causal model should be able to handle inferences of this sort.

Causal knowledge and similarity are just two of the many varieties of knowledge that support induc-
tive reasoning. Any single form of knowledge is a worthy topic of study, but everyday inferences
often draw upon multiple kinds of knowledge. We have not provided a recipe for combining arbi-
trary forms of knowledge, but our work illustrates two general themes that may apply quite broadly.
First, different generative models may capture different aspects of human knowledge, but all of these
models use a common language: the language of probability. Probabilistic models are modular, and
can be composed in many different ways to build integrated models of inductive reasoning. Second,
the stochastic component of most generative models is in part an expression of ignorance. Using one
model (e.g. a similarity model) to constrain the stochastic component of another model (e.g. a causal
network) may be a relatively general method for combining probabilistic knowledge representations.

Although we have focused on human reasoning, integrated models of induction are needed in many
scientific fields. Our combined model may find applications in computational biology: predicting
whether an organism expresses a certain gene, for example, should rely on phylogenetic relation-
ships between organisms and causal relationships between genes. Related models have already
been explored: Engelhardt et al. [13] develop an approach to protein function prediction that com-
bines phylogenetic relationships between proteins with relationships between protein functions, and
several authors have explored models that combine phylogenies with hidden Markov models. Com-
bining two models is only a small step towards a fully integrated approach, but probability theory
provides a lingua franca for combining many different representations of the world.
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