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People routinely make inferences about unobserved objects. A hotel guest with welts on his
arms, for example, will often worry about bed bugs. The discovery of unobserved objects
almost always involves a backward inference from some observed effects (e.g., welts) to
unobserved causes (e.g., bed bugs). The inverse reasoning account, which is typically for-
malized as Bayesian inference, posits that the strength of a backward inference is closely
connected to the strength of the corresponding forward inference from the unobserved
causes to the observed effects. We evaluated the inverse reasoning account of object discov-
ery in three experiments where participants were asked to discover the unobserved ‘‘attrac-
tors’’ and ‘‘repellers’’ that controlled a ‘‘particle’’ moving within an arena. Experiments 1 and
2 showed that participants often failed to provide the best explanations for various particle
motions, even when the best explanations were simple and when participants enthusiasti-
cally endorsed these explanations when presented with them. This failure demonstrates
that object discovery is critically dependent on the processes that support hypothesis
generation—processes that the inverse reasoning account does not explain. Experiment 3
demonstrated that people sometimes generate explanations that are invalid even according
to their own forward inferences, suggesting that the psychological processes that support
forward and backward inference are less intertwined than the inverse reasoning account
suggests. The experimental findings support an alternative account of object discovery in
which people rely on heuristics to generate possible explanations.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

Some of the most celebrated discoveries in the history
of science involve inferences about unobserved objects.
Nineteenth-century astronomers, for example, inferred
Neptune’s existence on the basis of mathematical calcula-
tions showing that an unseen planet would explain
anomalies in the orbits of the known planets. Inferences
about unobserved objects are also common, though less
dramatic, in everyday reasoning. A hotel guest who awakes
with welts on his arms will suspect bed bugs, and a person
who has been jilted by a lover will worry about romantic
competitors.

Because object discovery represents a particularly dra-
matic inductive leap, it often attracts the attention of thin-
kers who are interested in inductive inference.
Philosophers of science, for example, view the task of
understanding object discovery as one of the central prob-
lems of their field (e.g., Churchland & Hooker, 1985; van
Fraassen, 1980), and specific episodes such as the discov-
ery of Neptune have drawn repeated comment (e.g.,
Howson & Urbach, 1989/1996, pp. 121–122; Jaynes,
2003, pp. 133–139; Lipton, 2004, p. 89; Polya, 1954, pp.
130–132). Psychologists, however, have largely neglected
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the problem of object discovery. There are several studies
that demonstrate that people—and even infants—discover
unobserved objects in some circumstances (e.g., Csibra &
Volein, 2008; Saxe, Tenenbaum, & Carey, 2005), but the
general principles that support these inferences are not
well understood.

In this paper, we evaluate one potential account of
object discovery: the inverse reasoning account. Object dis-
covery often involves reasoning from effects to causes (e.g.,
reasoning from orbital anomalies to an undiscovered pla-
net), and these backward inferences can be contrasted with
forward inferences that involve reasoning from causes to
effects.1 The inverse reasoning account posits that backward
inferences are made by ‘‘inverting’’ the process of reasoning
forward from causes to effects. As a result, the strength of a
backward inference is closely related to the strength of the
corresponding forward inference. The inverse reasoning
account is usually formalized as Bayesian inference, which
provides a normative framework for backward inference.

There are at least two reasons why inverse reasoning
demands consideration as an account of object discovery.
First, philosophers of science have proposed that object
discovery—and scientific reasoning more generally—can
be viewed as a form of Bayesian inference (e.g., Howson
& Urbach, 1989/1996). Second, even though psychologists
have not yet evaluated Bayesian inference as an account
of object discovery, they have developed Bayesian models
of cognition that characterize human inference in a wide
variety of inferential tasks. The phenomena considered
range from low-level processes that support perception
(e.g., Ernst & Banks, 2002; Yuille & Kersten, 2006), motor
planning (e.g., Kording & Wolpert, 2006), language pro-
cessing (e.g., Chater & Manning, 2006), and semantic mem-
ory (e.g., Griffiths, Steyvers, & Tenenbaum, 2007) to higher-
level processes that support inferences about object dynamics
(e.g., Battaglia, Hamrick, & Tenenbaum, 2013; Gerstenberg,
Goodman, Lagnado, & Tenenbaum, 2012; Sanborn,
Mansinghka, & Griffiths, 2013; Smith & Vul, 2013; Teglás
et al., 2011), causation (e.g., Griffiths & Tenenbaum, 2005;
Lu, Yuille, Liljeholm, Cheng, & Holyoak, 2008), property
generalization (e.g., Kemp & Tenenbaum, 2009), and social
agents (e.g., Baker, Saxe, & Tenenbaum, 2009). It is there-
fore worth exploring whether inverse reasoning can also
explain how people discover unobserved objects.

To evaluate inverse reasoning as a psychological
account of object discovery, we investigated inference in
an experimental setting that was loosely inspired by the
discovery of Neptune. Participants in our experiments
observed particle motions such as the ones shown in
Fig. 1 and attempted to discover the unobserved ‘‘attrac-
tors’’ and ‘‘repellers’’ that influenced the particles. In addi-
tion to completing this sort of discovery trial, our
participants also completed prediction and evaluation trials:
1 We will use the term backward inference to refer to any inference from
observed effects to unobserved causes, and will reserve the term inverse
reasoning to refer to a specific approach to evaluating backward inferences.
This distinction is not always made in other contexts: other researchers
refer to the ‘‘inverse problem’’ and ‘‘inverse models’’ (e.g., Fienberg, 2006;
Tarantola, 2006; Wolpert & Kawato, 1998) in contexts where we would
refer only to backward inference.
the prediction trials required them to predict the motion of
a particle given an observed configuration of attractors and
repellers, and the evaluation trials required them to choose
between two possible explanations of a particle motion.
The discovery and evaluation trials involve backward infer-
ences and the prediction trials involve forward inferences.
The inverse reasoning account predicts that a reasoner’s
inferences on these different tasks will be consistent, and
our experiments were designed to test this prediction.

We expected that forward inferences in our experimen-
tal setting would be intuitive and straightforward because
physical reasoning is a core aspect of cognition that is pre-
sent early in development (Spelke, Breinlinger, Macomber,
& Jacobson, 1992; Teglás et al., 2011) and that draws on a
rich set of intuitions about physical causation (e.g., diSessa,
1993). Although people’s intuitions about physical causa-
tion are not always accurate (e.g., Clement, 1982; diSessa,
1993; McCloskey, 1983; McCloskey, Caramazza, & Green,
1980), this does not present a problem for our experimen-
tal strategy. The inverse reasoning account, after all, does
not claim that inferences on discovery, prediction, and
evaluation tasks will always be accurate; it claims only
that inferences on these tasks will be mutually consistent.
We hoped that choosing an experimental setting in which
forward inference is straightforward would allow us to
focus on the consistency of these inferences.

Although we focus throughout on the inverse reasoning
approach, an alternative tradition characterizes scientific
discovery as a problem-solving task in which the scientist
searches for a theory that can explain the observed data
(e.g., Klahr & Dunbar, 1988; Langley, Simon, Bradshaw, &
Zytkow, 1987; Simon, Langley, & Bradshaw, 1981). As part
of this tradition, psychologists and computer scientists
have developed computational models that recapitulate
several historical examples of scientific discovery. For
example, the DALTON system (Langley et al., 1987) has
been used to model the discovery of the structure of sub-
stances involved in chemical reactions, and the GELL-
MANN system (Fischer & Zytkow, 1992) has been used to
model the discovery of subatomic particles such as quarks.
We will return to the problem-solving approach in the
general discussion, and will discuss how it relates to the
inverse reasoning approach and the extent to which it is
consistent with our data.
1.1. The inverse reasoning account

The inverse reasoning account can be formalized using
Bayes’ theorem, which establishes the normative relation-
ship between forward and backward inferences in proba-
bilistic settings. Given data d and a hypothesis h, Bayes’
theorem states that

PðhjdÞ ¼ PðdjhÞPðhÞ
PðdÞ : ð1Þ

In the context of our task, the data d is the observed par-
ticle motion (the effect) and the hypothesis h represents a
possible configuration of the unobserved attractors and
repellers (the cause). Forward and backward inferences
are captured by the likelihood P(d|h) and posterior P(h|d),



Fig. 1. Particle motions used to study backward inference. In each case, participants viewed a sequence of ‘‘snapshots’’ and were told that the particles were
influenced by unobserved ‘‘attractors’’ and ‘‘repellers’’ located outside of the arena. The figure shows abbreviated snapshot sequences for the wall, centering,
and curved motions from Experiment 1. Participants provided explanations of the motions by indicating where the attractors and repellers would have been
in the outlined snapshots.
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respectively, and the prior P(h) captures the a priori
plausibility of the hypothesis. We assume that the prior
probability of a hypothesis is based on its simplicity
(Lombrozo, 2007): for example, configurations with few
attractors and repellers are more plausible a priori than
configurations with many attractors and repellers. The
denominator ensures that the posterior probabilities of
the hypotheses sum to 1.0.

The exact commitments of the inverse reasoning
account depend on whether it is formulated as a computa-
tional- or process-level account of object discovery (see
Marr, 1982). We consider the commitments of each of
these formulations in turn.
1.2. Inverse reasoning as a computational-level account

When formulated at the computational level, the
inverse reasoning account proposes that people are able
to identify the explanation that maximizes the posterior
probability in Eq. (1) (see the upper half of Fig. 2). This
formulation predicts which explanation the reasoner will
provide, but does not make any process-level commitments
about how people discover or identify this explanation.

How likely is it that people will be able to discover the
most probable explanations in our object-discovery task?
Different considerations suggest different answers. On
the one hand, given the early emergence of physical rea-
soning in cognitive development and given the importance
of physical reasoning in everyday inference (Spelke et al.,
1992), people should be highly skilled at making inferences
about physical events. This prediction has been tested in a
task where participants infer the mass ratio of two objects
by viewing scenes in which those objects collide (e.g.,
Gilden & Proffitt, 1989; Todd & Warren, 1982), and peo-
ple’s inferences on this task are largely consistent with
the inverse reasoning account (Sanborn et al., 2013).
On the other hand, computational-level accounts pre-
dict human inferences more accurately on some tasks than
on others (Marcus & Davis, 2013; see also Fernbach &
Sloman, 2009), and it may be more difficult to discover
the best explanation in our object-discovery task than in
the mass-ratio task. After all, the object-discovery task
involves simultaneously inferring the number, the loca-
tions, and the properties of multiple unobserved objects;
the mass-ratio task only involves inferring a single unob-
served property (the mass ratio). In tasks such as object
discovery, it can be challenging to decide which
explanations to consider in the first place, and people
sometimes fail to consider relevant explanations (e.g.,
Bonawitz & Griffiths, 2010). Further evidence for the
importance of this decision comes from the finding that
people frequently overestimate the probability of a focal
explanation. This overestimation is commonly attributed
to a failure to consider alternative explanations (e.g.,
Tversky & Koehler, 1994; see also Koriat, Lichtenstein, &
Fischoff, 1980; Thomas, Dougherty, Sprenger, & Harbison,
2008).

In evaluating the computational-level inverse reasoning
account, we were particularly interested in comparing
inferences on the discovery and evaluation trials. Recall
that the evaluation trials required participants to choose
between two possible explanations of a particle motion.
The computational-level account in Fig. 2 is applied to
these trials by restricting the hypothesis space H to contain
only the two candidate explanations provided. Because the
computational-level account predicts that participants will
identify the explanation with the highest possible poster-
ior probability on the discovery trials, it predicts that par-
ticipants will prefer the explanation identified on the
discovery task to any other explanation presented during
the evaluation trials. To test this prediction, we presented
participants with evaluation trials that asked them to



Fig. 2. Two ways in which the inverse reasoning account can be applied to object discovery. The computational-level formulation predicts that people can
identify the explanation with the maximum posterior probability, but does not entail any commitments about how this explanation is identified. The
process-level formulation suggests that people use Eq. (1) to evaluate a subset of the possible explanations by performing inverse reasoning over that
subset. The dashed rectangle outlines the scope of the process-level inverse-reasoning account. d = the observed data; H = the hypothesis space of possible
explanations; H0 = a subset of the full hypothesis space; {P(h)} = the prior probabilities of each hypothesis in H; {P(h0)}, {P(d|h0)}, and {P(h0|d)} = the prior
probabilities, likelihoods, and estimated posterior probabilities of each hypothesis in H0 .
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choose between their own explanations from the discovery
trials and various alternative explanations. To the extent
that discovering the explanation with maximal posterior
probability is difficult, participants may fail to discover
the best explanation for a particle motion even while
expressing a clear preference for that explanation on eval-
uation trials.

1.3. Inverse reasoning as a process-level account

The computational-level account of object discovery
predicts that the reasoner will discover the explanation
with the maximum posterior probability. In practice, how-
ever, discovering the best explanation can be a computa-
tionally intractable problem. A consideration of
processing constraints suggests that inverse reasoning
might be more realistically formulated as a process-level
rather than a computational-level account of object discov-
ery. According to this formulation, the reasoner—being
unable to consider every possible explanation of the
data—considers a subset of the possible explanations and
then uses inverse reasoning to evaluate the selected expla-
nations (see the lower half of Fig. 2). The core prediction of
this process-level inverse reasoning account is that people
evaluate the proposed explanations by performing forward
inferences; the task of explaining how people propose
explanations is set aside as a problem to be solved by some
other account. It is not clear what form this other account
might take, but there are a few reasonable candidates. For
example, one possibility is that people learn inferential
rules that allow them to generate potential explanations
from the given observations. Another possibility is that
domain-general search algorithms allow people to identify
hypotheses that have high posterior probabilities.
Statisticians and computer scientists have identified vari-
ous search algorithms that generate possible explanations
in a manner that allows them to approximate computa-
tional-level inverse reasoning, and rational process models
based on these search algorithms have been proposed as
psychological accounts of backward inference (Griffiths,
Vul, & Sanborn, 2012).

Unlike the computational-level inverse reasoning
account, the process-level account allows for the possibil-
ity that people will fail to discover the best explanation
for the observed data. In the context of our experiments,
therefore, the process-level account allows for the possibil-
ity that a participant will fail to identify the best explana-
tion on a discovery trial even while preferring that
explanation on evaluation trials. Because the process-level
account proposes that people perform forward inferences
during object discovery, however, it still predicts that peo-
ple will only provide explanations that actually support a
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forward inference to the observations. To test this predic-
tion, we asked the participants in our experiments to pre-
dict the motion of a particle given their own explanations
from the discovery trials. Both formulations of the inverse
reasoning account propose that the predicted motions on
these trials will closely resemble the to-be-explained
motion from the corresponding discovery trials.

The process-level formulation of the inverse reasoning
account has inspired computational models of human rea-
soning (e.g., Brown & Steyvers, 2009; Sanborn, Griffiths, &
Navarro, 2010; Ullman, Goodman, & Tenenbaum, 2010),
and is also supported by the observation that there is close
agreement between forward and backward inferences on
some inferential tasks (Fernbach, Darlow, & Sloman, 2010,
2011). Fernbach et al. (2010, 2011), for example, found close
agreement between participants’ estimates of (1) the proba-
bility that an infant with a drug addiction had a mother with
a drug addiction (a backward inference), (2) the probabili-
ties that mothers with and without drug addictions would
give birth to infants with drug addictions (forward infer-
ences), and (3) the prevalence of drug-addicted mothers
(the prior plausibility of the focal hypothesis). This agree-
ment is exactly what would be expected if people’s back-
ward inferences involved inverse reasoning.2

Other evidence, however, suggests that forward and
backward inference may be supported by distinct psycho-
logical processes. Medical (e.g., Patel & Groen, 1986) and
physics (e.g., Larkin, McDermott, Simon, & Simon, 1980)
experts, for example, often apply inferential rules that
directly map observed effects onto unobserved causes.
These rules allow these experts to make backward infer-
ences without carrying out any kind of forward inference.
In the context of our object-discovery task, heuristic rules
might similarly allow a reasoner to generate explanations
directly from the observed particle motions. For example,
one heuristic generates potential explanations by placing
an attractor directly along the path of a particle’s motion.
This heuristic often produces reasonable explanations,
but there are also situations where it produces explana-
tions that do not actually predict the observed motion. In
such situations, it might be possible to observe a dissocia-
tion between forward and backward inference in which
people provide explanations that do not actually explain
the particle motion. This dissociation would be inconsis-
tent with both formulations of the inverse reasoning
account.

1.4. Summary

Inverse reasoning can be formulated as either a
computational- or process-level account of object discov-
ery. Because the computational-level formulation specifies
which explanations a person will produce and the process-
level formulation specifies how these explanations are
identified, these formulations are to some extent indepen-
dent. Table 1 includes examples to which both, neither, or
just one of these formulations applies. Rational process
2 Fernbach, Darlow & Sloman refer to inferences from causes to effects as
predictive and inferences from effects to causes as diagnostic, and other
researchers have used the same terminology (Waldmann & Holyoak, 1992).
models are process-level formulations of the inverse rea-
soning account, and these implementations might success-
fully or unsuccessfully approximate computational-level
inverse reasoning (see rows one and three in Table 1).
Backward inference could also be implemented by apply-
ing inferential rules that directly map the observed effects
to the unobserved causes. Such an implementation—which
would not involve inverse reasoning at the process-level—
might be either consistent or inconsistent with computa-
tional-level inverse reasoning (see rows two and four in
Table 1). For example, experienced doctors might rely on
inferential rules that allow them to correctly diagnose a
disease from its symptoms, but novice doctors might apply
inappropriate heuristics and make incorrect diagnoses.

We developed three experiments with the aim of eval-
uating both the computational-level and the process-level
formulations of the inverse reasoning account.
Experiments 1 and 2 tested the computational-level inverse
reasoning account by comparing our participants’ infer-
ences on discovery and evaluation trials. Experiment 3
tested the process-level inverse reasoning account by com-
paring participants’ inferences on discovery and prediction
trials.
2. Experiment 1

Our primary goal in Experiment 1 was to test whether
our participants would discover the best explanations of
the presented particle motions. To do so, we first identified
what we believed to be the best explanation of each of the
particle motions from the discovery trials. The simplest
possible observed motion is a straight line, and the obvious
explanation for this trajectory is that the particle is either
moving toward an attractor or moving away from a repel-
ler. The particle motions presented in the discovery phase
included some of the next simplest cases. The discovery
phase contained three focal scenes that could be explained
in at least two ways (see Figs. 1 and 3). First, each scene
had a parsimonious explanation that invoked a relatively
small number of stationary attractors and repellers (see
the left column of Fig. 3). For example, the wall motion
could be explained by positing a single repeller near the
left wall of the arena: this repeller would explain the initial
diagonal motion of the particle, and so long as one assumes
that friction along the wall is minimal, it would also
explain the subsequent horizontal motion of the particle.
In our judgment, these parsimonious explanations were
among the best explanations for the particle motions.
Second, each scene had a non-parsimonious alternative
explanation, where the attractors and repellers sponta-
neously appear, disappear, or move, or where the attrac-
tors and repellers have different strengths.

The computational-level inverse reasoning account pre-
dicts that the parsimonious explanations should be gener-
ated during the discovery phase and enthusiastically
endorsed during the evaluation phase, and we were espe-
cially interested in testing this prediction. An alternative
possibility is that some participants would discover expla-
nations by applying a heuristic in which an attractor or
repeller is always placed along the path of the particle. If



Table 1
Examples of reasoning systems that are consistent or inconsistent with the
computational-level and process-level formulations of the inverse reason-
ing account.

Consistency Example

Computational Process

Yes Yes Rational process model that relies on a
good approximation

Yes No Expert using ‘‘compiled’’ inferential
rules

No Yes Rational process model that relies on a
poor approximation

No No Novice using flawed heuristic rules

Fig. 3. Parsimonious and non-parsimonious explanations for the focal
motions in Experiment 1. Each explanation is represented as a specifica-
tion of the locations of the attractors (white circles outside of the arena)
and repellers (black circles outside of the arenas) in two different
snapshots from the particle motion. The alternative explanation for the
curved motion is considered non-parsimonious because it only explains
the particle motion under the assumption that the attractor is stronger
than the repeller; otherwise, the repeller would pin the particle to the
leftmost wall of the arena.

C.D. Carroll, C. Kemp / Cognition 139 (2015) 130–153 135
some of our participants used this strategy, then they
would fail to discover the parsimonious explanations even
while expressing a preference for the parsimonious expla-
nations in the evaluation phase—a result that would be
inconsistent with the computational-level inverse reason-
ing account.

Experiment 1 also included a prediction phase in which
participants predicted the particle motions that would
result from several kinds of configurations of the attractors
and repellers. Each presented configuration could be
viewed as an explanation for one of the motions observed
during the discovery phase. Some of the prediction trials
presented participants with the parsimonious explanations
for the three focal particle motions. These trials allowed us
to determine whether participants agreed that the
parsimonious explanations could in fact explain the
observed motions—if not, it would be unsurprising if these
explanations were rarely chosen during the discovery
phase. On other prediction trials, participants predicted
the expected path of the particle given their own explana-
tions for the particle motions from the discovery phase.
This allowed us to assess whether the explanations gener-
ated in the discovery phase would in fact explain the
observed particle motion according to the participants’
own forward inferences.

2.1. Method

2.1.1. Participants
Thirty undergraduates at Carnegie Mellon University

participated for course credit.

2.1.2. Materials and procedure
Participants were asked to imagine themselves working

for a scientist who studies the motion of ‘‘particles’’ within
a rectangular arena. Participants learned that the particle
motions were caused by ‘‘attractors’’ and ‘‘repellers’’ which
were always located outside the arena. Participants then
viewed three scenes that were designed to illustrate the
basic properties of the attractors and repellers. All scenes
were displayed as a sequence of bird’s-eye-view camera
snapshots of the particle motion. The first two snapshots
of each scene always showed the particle being restrained
by a ‘‘holder’’ box that prevented the particle from moving;
these initial snapshots established that the particle did not
have an initial velocity.

Before beginning the experiment, participants viewed
one familiarization scene showing that particles move
toward attractors and another familiarization scene show-
ing that particles move away from repellers. The attractors
and repellers were depicted as green and red circular
objects, respectively. A third familiarization scene showed
that a particle placed between two attractors moved
toward the closer one, and the accompanying instructions
explained that nearby attractors and repellers exert greater
forces on the particle than more distant attractors and
repellers. After completing the familiarization trials, the
participants completed (in order) the discovery, prediction,
and evaluation phases.

2.1.2.1. Discovery phase. In the discovery phase, partici-
pants were told that the camera was not set up properly
during some of the experiments. As a result, the snapshot
sequences from these experiments failed to capture the
locations of the attractors and repellers. Participants were
asked to infer the locations of the unseen attractors and
repellers by reviewing the snapshot sequences.

Participants completed a practice trial and then gener-
ated explanations for fifteen scenes in which the attractors
and repellers were not visible. We will focus on the three
critical scenes that are depicted in Fig. 1. In the wall-
motion scene, the particle traveled along a diagonal until
it reached the top wall of the arena. It then continued along
the top wall of the arena. In the centering-motion scene,
the particle moved from the center of the arena to the
top wall, paused, and then returned to the center of the
arena. In the curved-motion scene, the particle moved
along a curved path from the lower-left corner of the arena
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to the lower-right corner of the arena. Because the remain-
ing twelve scenes did not have analogues in the prediction
or evaluation phases, we do not discuss them further.3

On each discovery trial, the participants viewed the
sequence of snapshots showing the particle motion. Then
participants were asked to explain the particle motion by
specifying where the attractors and repellers would have
been in two of the snapshots (see the outlined snapshots
in Fig. 1). The instructions explained that the participants
were reporting the locations of the attractors and repellers
in two separate snapshots because ‘‘there may be some sit-
uations where you think that something has changed.’’
Responses were made using a computer interface that
showed the two response snapshots and a summary of
the to-be-explained particle motion. Participants could
place attractors and repellers by clicking on any location
outside the arena, and they were able to move and erase
the attractors and repellers as needed. A ‘‘reuse’’ button
located between the two response pictures copied the
attractors and repellers in the first response snapshot to
the corresponding locations in the second response snapshot.
Participants were encouraged to provide up to three explana-
tions for each scene; each explanation was entered on a sepa-
rate screen. Participants were also encouraged to supplement
their pictorial explanations with written explanations as
needed. These supplementary explanations were entered in
a text box that appeared when the participant clicked the
‘‘add explanation’’ button. Because supplementary explana-
tions were uncommon, they are not discussed further.

After providing explanations for a particle motion, the
participants rated each provided explanation on a scale
ranging from 1 (very unlikely to be the true explanation)
to 7 (very likely to be the true explanation). Participants
were also asked to rate the likelihood that the true expla-
nation was ‘‘fundamentally different’’ from the provided
explanation or explanations, but these ratings were not
further analyzed. The ratings of the provided explanations
were used to identify each participant’s preferred explana-
tion, which we defined as the explanation that received
the highest rating, with ties broken by selecting the expla-
nation that was provided first. These preferred explana-
tions were presented to the participants in the prediction
and evaluation phases.
2.1.2.2. Prediction phase. Participants were asked to predict
the particle paths given the locations of the attractors and
repellers. Some of the prediction trials presented partici-
pants with configurations corresponding to an early snap-
shot from each of the parsimonious and non-parsimonious
explanations (see the first snapshot for each explanation in
Fig. 3). For explanations where the configuration of the
attractors and repellers changed during the particle
motion, participants also predicted the motion of the
3 Most of these scenes were slight variations of the focal scenes for which
the parsimonious explanations were inappropriate. We included these
scenes to serve as fillers and to show that any participants who generated
the parsimonious explanation understood its scope and the circumstances
under which it applied. As we discuss in the Results section, however,
participants rarely generated the parsimonious explanation. As a conse-
quence, these remaining scenes were generally uninformative.
particle given the configuration of the particles in a later
snapshot (see the second snapshots for each relevant
explanation in Fig. 3).

Three other prediction trials presented each participant
with configurations of the attractors and repellers taken
from his or her own explanations for the three focal discov-
ery scenes. In particular, for each focal discovery scene, we
presented each participant with the first response snap-
shot from his or her preferred explanation. These trials
allowed us to assess whether the explanations that the
participants provided in the discovery phase would have
produced the observed motion according to the partici-
pants’ own forward inferences. Four additional prediction
trials served as pilot trials for future experiments and will
not be discussed further.

2.1.2.3. Evaluation phase. In the evaluation phase, partici-
pants once again viewed the wall, centering, and curved
motions. There were two evaluation trials for each motion
scene: on one trial, the participant chose between his or
her preferred explanation and the parsimonious explana-
tion shown in the left column of Fig. 3; on the other trial,
the participant chose between his or her own explanation
and the non-parsimonious explanation (see the right col-
umn of Fig. 3). The non-parsimonious explanations for
the wall and centering motions involved more config-
uration changes than the corresponding parsimonious
explanations and the alternative explanation for the
curved motion only explained the particle motion if the
attractor is assumed to be stronger than the repeller. The
trials with the non-parsimonious explanations served to
control for any task demands associated with asking a par-
ticipant to choose between his or her explanation and an
experiment-provided explanation. To further limit task
demands, the explanations were described as responses
provided by other participants.

On each evaluation trial, participants were asked to
choose the explanation that was more likely to be the true
explanation. Because participants occasionally generated
the parsimonious or non-parsimonious explanations
themselves, this meant that participants were sometimes
presented with a choice between two identical explana-
tions. For these situations, participants were provided with
a ‘‘these explanations are identical’’ button.

2.2. Results

The main finding is that participants often failed to gen-
erate parsimonious explanations in the discovery phase
but frequently endorsed them in the evaluation phase.
This result suggests that inferences in the discovery phase
were incompatible with the computational-level inverse
reasoning account. Before reviewing the evidence for this
finding in full detail, we first provide a general overview
of the explanations that participants generated in the dis-
covery phase.

2.2.1. Overview of discovery responses
Fig. 4 depicts the most common preferred explanations

for the focal discovery trials. ‘‘Heuristic’’ explanations that
posited attractors or repellers directly on the path of the



Fig. 4. ‘‘Heatmaps’’ that represent the most common preferred explanations for each discovery scene. Locations where attractors were often placed are
depicted as brighter areas and locations where repellers were often placed are depicted as darker areas. The number of responses represented by each
explanation type is shown in parentheses.

4 The number of participants who were classified as providing parsimo-
nious explanations exceeds the number of parsimonious explanations that
are depicted in Fig. 4. The reason is that some participants provided the
parsimonious explanations as secondary rather than preferred explanations
(Fig. 4 only depicts preferred explanations).
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particle were common explanations for the wall and center-
ing motions; heuristic explanations were less common but
were still represented among the explanations for the
curved motion. For the wall motion, many of the other
explanations resembled the heuristic explanation but pos-
ited additional attractors or repellers (the ‘‘modified heuris-
tic’’ responses). Often, these modified explanations posited
that the attractors and repellers along the paths of the par-
ticle motion remained stationary throughout the particle
motion. Only a single participant provided a parsimonious
explanation. For the centering motion, many of the non-
heuristic explanations posited balancing repellers in the
second response snapshot. Some of these explanations were
parsimonious (the ‘‘parsimonious’’ explanations), but others
posited an additional attractor in the first response picture
(the ‘‘non-parsimonious balancing’’ explanations). For the
curved motion, most participants provided explanations
that posited the simultaneous presence of many attractors
and repellers (the ‘‘many influences’’ explanations). Other
participants provided explanations that posited a single sta-
tionary repeller and a single stationary attractor. These
explanations were classified as ‘‘parsimonious’’ when the
repeller was located at the left of the arena and ‘‘orbiting’’
when the repeller was located at the bottom of the arena.
(As explained previously, the orbiting explanation only
explains the particle motion under the assumption that
the attractor is stronger than the repeller. Therefore, it
was not considered parsimonious.)
2.2.2. Inverse reasoning as an account of hypothesis discovery
To investigate the generation of parsimonious explana-

tions, we classified each explanation as parsimonious or
non-parsimonious. An explanation of the wall motion
was coded as parsimonious when it posited a single sta-
tionary attractor or repeller in a location that would
explain the particle motion. An explanation of the center-
ing motion was coded as parsimonious when it invoked a
single repeller in the first response snapshot and balancing
repellers in the second. An explanation of the curved
motion was coded as parsimonious when it posited a static
configuration of two hidden objects that would explain the
particle motion without any additional assumptions (e.g.,
without assumptions about the relative strength of an
attractor and repeller). Using these criteria, we found that
only 2, 6, and 3 participants generated a parsimonious
explanation for the wall, centering, and curved motions,
respectively.4

This finding is problematic for the computational-level
inverse reasoning account, which predicts that participants
should have found and provided the best explanations for



Fig. 5. Inferences about the parsimonious explanations for the (a) wall, (b) centering, and (c) curved motions. The path traces within the arenas show the
predicted particle motions for the parsimonious explanations; note that participants were classified as ‘‘predictors’’ and ‘‘non-predictors’’ depending on
whether their predicted particle motions resembled the actual particle motions from the discovery phase (all classifications were made by the first author).
The bar graphs show the rates at which participants generated and endorsed the parsimonious explanations in the discovery and evaluation phases.
Gen. = generated; End. = endorsed.

5 For this analysis, participants were counted as having endorsed a
parsimonious explanation when either (a) the participant preferred the
experimenter-provided parsimonious explanation to his or her own or (b)
the participants’ own explanation was parsimonious. In the latter case, the
evaluation trial involved a choice between two parsimonious explanations,
so any response constituted the endorsement of a parsimonious
explanation.
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the particle motions. The inverse reasoning view might be
reconciled with this finding if we suppose that participants
did not actually believe that the parsimonious explana-
tions were the best explanations. The responses of the par-
ticipants on the prediction and evaluation phases
undermine this supposition, however. Fig. 5 shows that
many participants agreed that the parsimonious explana-
tion would indeed produce the observed motion: when
provided with the parsimonious explanations, 14, 24, and
23 out of 30 participants were ‘‘predictors’’ who predicted
motion paths that closely resembled the wall, centering,
and curved motions, respectively. Note also that even
among the predictors, participants rarely generated the
parsimonious explanations.

The evaluation phase further confirmed that many par-
ticipants recognized the merits of the parsimonious expla-
nations. Recall that some of the trials in the evaluation
phase asked participants to choose between a parsimo-
nious explanation and their self-generated explanations.
Participants endorsed parsimonious explanations on these
trials at much greater rates than they generated them in
the discovery phase: 14 out of 30, 18 out of 30, and 17
out of 30 participants endorsed the parsimonious explana-
tion for the wall, centering, and curved motions, as com-
pared to the 2 out of 30, 6 out of 30, and 3 out of 30
participants who generated parsimonious explanations in
the discovery phase. In addition, the rate of endorsement
was even higher when the analysis is restricted to the par-
ticipants who believed that the parsimonious explanations
were valid (see Fig. 5).5 Among the predictors, participants
were marginally more likely to endorse a parsimonious
explanation for the wall motion than to generate a parsimo-
nious explanation for the wall motion (p = .054) and signifi-
cantly more likely to endorse than to generate a
parsimonious explanation for the centering (p = .008) and
curved (p < .001) motions (all by Fisher’s exact test).

It is possible that the non-predictors in Fig. 5 endorsed
explanations that they did not generate because they relied
on different physical theories during the discovery and
evaluation phases. For example, 13 out of 16 wall-motion
non-predictors predicted that the particle would stop mov-
ing after it collided with the upper wall, and this prediction
presumably reflects an assumption that the force of fric-
tion between the particle and the wall is significant.
During the evaluation phase, however, participants were
asked to consider a parsimonious explanation that sug-
gests that the friction produced by contact with the wall
is not significant. Some of the non-predictors may have
endorsed this explanation after inferring that their initial
assumptions about friction were incorrect. Non-predictors



Fig. 6. The predictions of the participants when provided with their own
explanations for the (a) wall, (b) centering, and (c) curved motions.
Participants were classified as ‘‘predictors’’ when they predicted particle
motions that initially resembled the motions from the discovery trials.
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who revised their physical theories in this way would gen-
erate incompatible responses to the discovery and evalua-
tion phases even if they relied on inverse reasoning during
both phases.

Critically, however, the responses of the predictors in
Fig. 5 cannot be explained in this way. Even if these predic-
tors were relying on physical theories different from the
one that we had in mind, their predictions suggest that
the parsimonious explanations were valid with respect to
these physical theories. The fact that many of these predic-
tors endorsed but did not generate the parsimonious
explanations suggests that the computational-level version
of the inverse reasoning account is limited as an account of
hypothesis discovery.

One remaining concern is that the high endorsement
rates from the evaluation phase may reflect a task demand
implicit in asking the participants to choose between their
own explanations and experimenter-provided explana-
tions. Participants, however, often preferred their own
explanations to competing explanations in other situa-
tions. This can be seen, for example, in the low rates at
which the non-predictors endorsed the parsimonious
explanations (see Fig. 5). It can also be seen by comparing
evaluation trials that involved parsimonious competing
explanations to evaluation trials that involved non-
parsimonious explanations from Fig. 3. Participants were
more likely to prefer parsimonious explanations to their
own than to prefer non-parsimonious explanations to their
own on the evaluation trials for the wall (13 of 30 vs. 11 of
30 participants), centering (13 out of 30 vs. 3 out 30 par-
ticipants), and curved (15 out of 30 vs. 7 out of 30 partici-
pants) motions. These differences were significant after
collapsing across the three discovery scenes, p = .003 by
Fisher’s exact test.

2.2.3. Forward inferences from preferred explanations
Both formulations of the inverse reasoning account

posit that a good explanation should support a strong for-
ward inference to the observed particle motion. Recall that
three prediction trials tested this prediction by presenting
participants with their preferred explanations for the par-
ticle motions. The inverse reasoning account predicts that
the predicted motions on these trials should closely resem-
ble the actual motions from the discovery phase, at least
during the initial stages of the particle’s motion (the pre-
dicted and actual motions might reasonably diverge in
later stages of the motion if the participant’s explanation
involved a changing configuration of attractors and repel-
lers). Fig. 6 shows that even though the predicted and
actual motions were often consistent, these motions were
inconsistent in 17 out of 90 cases. There are two possible
interpretations of this finding. First, people may have pro-
vided ‘‘explanations’’ that are simply invalid, even accord-
ing to their own forward inferences. If so, then this would
provide evidence for a fundamental dissociation between
forward and backward inference. The second inter-
pretation is more mundane: perhaps the discrepancies
between the discovery and prediction trials are explained
by differing assumptions about the initial velocity of the
particle. In particular, given that the particle had already
moved a short distance before the first response snapshot
in the discovery phase, it was natural to assume that the
particle was already in motion at that point. In contrast,
there was no reason to assume that the particle was in
motion at the outset of the prediction phases. In summary,
although the experimental results are consistent with the
existence of a fundamental dissociation between forward
and backward inference, more mundane interpretations
are also possible. We sought to find more conclusive evi-
dence for this dissociation in Experiment 3.

2.2.4. Inverse reasoning as an account of hypothesis
evaluation

The inverse reasoning account fares better as an
account of hypothesis evaluation than as an account of
hypothesis discovery. The inverse reasoning account pre-
dicts that participants should prefer explanations with
higher posterior probabilities on the evaluation trials, and
participants’ inferences were almost always consistent
with this prediction. This is revealed in part by the obser-
vation that inferences on the prediction and evaluation tri-
als were—as the inverse reasoning account predicts—
closely related: the predictors very often endorsed the
parsimonious explanation and the non-predictors almost
never did (see the endorsement rates in Fig. 5). These dif-
ferences were significant after collapsing across the discov-
ery trials, p < .001 by Fisher’s exact test. Furthermore, as
noted previously, participants were more likely to prefer
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a parsimonious explanation to their own explanation than
to prefer one of the less parsimonious alternative explana-
tions to their own explanation.
2.3. Discussion

Our main experimental finding is that even though par-
ticipants frequently endorsed the parsimonious explana-
tions in the evaluation phase, they rarely provided them
in the discovery phase. This suggests that our participants
failed to consider the parsimonious explanations in the
discovery phase. In some respects, this is not surprising.
Given that there are an infinite number of possible expla-
nations for any given particle motion, it is impossible for
participants to consider every possible explanation. Yet
the parsimonious explanations were not especially compli-
cated or obscure; rather, they were simple explanations
that should have been within reach. So why did partici-
pants fail to generate them? Experiment 1 was not
designed to address this question, but one possibility is
that our participants ‘‘satisficed’’ by prematurely termi-
nated the search for better explanations after finding the
heuristic explanations. Of course, it is also possible that
participants were not able to discover the parsimonious
explanations despite searching for them: perhaps the
parsimonious explanations were not as simple as we
expected. To decide between these possibilities, we con-
ducted Experiment 2, which was designed to explore
whether the parsimonious explanations were within the
reach of our participants.
6 Some of the changes were intended to make the parsimonious
explanations more appealing. By decreasing the angle of the collision
between the wall and the particle in the wall-motion scene, for example,
we intended to limit the influence of friction forces between the particle
and the wall. Other changes were intended to render some of the non-
parsimonious explanations less appealing. For example, reducing the height
of the arena in the curved-motion scene meant that a repeller placed along
the bottom wall of the arena would not be at the focal point of the curve
formed by the particle’s path.
3. Experiment 2

Experiment 2 was designed to demonstrate that people
are able to discover the parsimonious explanations for the
discovery scenes when the heuristic explanations for those
scenes are unavailable. To manipulate whether the heuris-
tic explanations were available to participants in
Experiment 2, we placed additional constraints on what
sorts of explanations were allowed. In the static condition,
participants were instructed that attractors and repellers
were always stationary and that they could neither appear
nor disappear. Participants in the static condition were also
informed that there were limits on the number of attrac-
tors and repellers that could be involved in the explanation
of each scene. These constraints were designed to exclude
the heuristic explanations for the wall, centering, and
curved motions that were presented in Experiment 2. In
the wall motion, for example, heuristic explanations posit
that one attractor or repeller is present during the parti-
cle’s diagonal motion and that a different attractor or
repeller is present during the particle’s motion along the
wall. This explanation was not available to participants in
the static condition because it involved disappearing and
appearing attractors and repellers. The dynamic condition
served as a control condition in which the heuristic expla-
nations were available. Participants in the dynamic condi-
tion could provide explanations that posited any number
of appearing, disappearing, and moving attractors and
repellers. We expected that many participants in the static
condition would provide the parsimonious explanations
for the particle motions. Such a finding would indicate that
the parsimonious explanations are within the reach of our
participants and that participants in Experiment 1 could
have discovered them had they only looked for them.

3.1. Method

Except where noted, our method was identical to the
method from Experiment 1.

3.1.1. Participants
Thirty-eight undergraduates at Carnegie Mellon

University participated for course credit and were ran-
domly assigned to the static (n = 19) and dynamic
(n = 19) conditions.

3.1.2. Materials and procedure
The three particle motions of interest are shown in

Fig. 7. The wall and curved particle motions represent
minor variations on the corresponding particle motions
from Experiment 1.6 The differences between centering
motions in the two experiments were more significant: in
Experiment 1, the particle traveled to the top of the arena
and then to the center of the arena; in Experiment 2, the parti-
cle traveled from the top of the arena to the center of the arena
(i.e., the motion involved only the latter half of the motion
from Experiment 1). The reason for this alteration was to
allow the particle motion to be explained without positing
a changing configuration of the attractors and repellers.

In addition to the three particle motions depicted in
Fig. 7, there were six filler particle motions. Because these
filler trials are not relevant to our primary experimental
question, we do not discuss them further.

3.1.2.1. Discovery phase. After viewing a particle motion
using the same interface as in Experiment 1, participants
were asked to provide the single ‘‘most likely’’ explana-
tion for the particle motion. The response interface was
modified so that participants in the dynamic condition
were able to specify the exact configuration of attractors
and repellers in every snapshot. The response interface
displayed a single snapshot at a time, and participants
were able to navigate to different snapshots using for-
ward and backward buttons. Participants were able to
place and erase attractors and repellers in any
snapshot, but the effect of these actions differed between
the experimental conditions. When a participant in the
dynamic condition placed an object in a snapshot, the
object was automatically placed in all subsequent snap-
shots. Likewise, when a participant in the dynamic condi-
tion erased an object, it was automatically removed from



Fig. 7. The particle motions and parsimonious explanations for the wall,
centering, and curved motions. The circles inside the arenas represent the
initial locations of the particles, and the path traces show where the
particle moved during the scene. The circles outside of the arenas
represent the locations of the repellers (black circles) and attractors
(white circles) for the parsimonious explanations that were presented in
the prediction and evaluation phases.
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all subsequent snapshots. The interface therefore allowed
participants in the dynamic condition to specify when an
attractor or repeller appeared and disappeared. By placing
an attractor in the third snapshot and erasing it in the
tenth snapshot, for example, a participant in the dynamic
condition could specify that the attractor was present in
snapshots three through nine. When a participant in the
static condition placed or erased an object, it was placed
or erased from all snapshots. As a consequence, partici-
pants in the static condition were only able to provide
explanations that posited a static configuration of attrac-
tors and repellers.

The response interface also prevented participants in
the static condition from providing explanations that con-
tained more than a certain number of hidden objects.
Explanations for the centering and curved motions could
posit up to two hidden objects and explanations for the
wall motion could posit one hidden object. The instruc-
tions emphasized that the allowable number of hidden
objects represented an upper limit rather than a target:
participants were encouraged to provide the best possible
explanation for the particle motion, regardless of whether
or not it contained fewer than the allowable number of
hidden objects. For participants in the static condition,
the response interface displayed the number of hidden
objects that had been placed and the number of additional
hidden objects that were available for placement.

To ensure that participants understood how placing or
erasing a hidden object in one snapshot influenced
whether the hidden object was present in other snapshots,
participants were shown summaries of their explanations
as they entered them. The summaries showed the posited
locations of the attractors and repellers across a sequence
of snapshots that spanned the particle motion.
Additionally, participants were shown another summary
of the explanation after submitting it. Upon viewing this
summary, participants were asked to confirm that the pro-
vided explanation was the explanation that they had
intended to submit. Participants who wanted to make
changes to their explanations during the confirmation trial
were allowed to return to the response interface to do so.

In contrast to Experiment 1, participants were not asked
to rate the provided explanations. Furthermore, partici-
pants were also provided with a ‘‘no explanation’’ button
that allowed them to indicate when they were unable to
find an explanation for the particle motion.
3.1.2.2. Prediction phase. In the prediction phase, partici-
pants predicted the motion of the particle given various
configurations of the attractors and repellers. Three of
the configurations corresponded to the parsimonious
explanations shown in Fig. 7.

3.1.2.3. Evaluation phase. The trials in the evaluation phase
required participants to choose between the parsimonious
explanations for the focal scenes and their own explana-
tions for those scenes. Some participants were unable to
generate explanations for some of the motions in the dis-
covery phase, and those participants were not asked to
choose between explanations for those motions.

3.2. Results

Our primary finding is that participants in the static
condition often discovered parsimonious explanations for
the discovery scenes but that participants in the dynamic
condition rarely did so. This result suggests that the
parsimonious explanations were in fact accessible and that
participants in the dynamic condition could have discov-
ered them had they searched beyond the few hypotheses
that came immediately to mind.

3.2.1. Discovery phase
Fig. 8 depicts the most common explanations for each

discovery scene and shows the number of participants in
each condition who generated each explanation. Before
discussing the responses in detail, we first note that par-
ticipants in the static condition discovered parsimonious
explanations on 31 out of 57 discovery trials but that par-
ticipants in the dynamic condition discovered parsimo-
nious explanations on only 12 out of 37 discovery trials.
This difference was statistically significant, p < .001 by
Fisher’s exact test, and consistent across each of the discov-
ery scenes, p’s = .017, .099, and .090 for the wall, centering,
and curved motions, respectively (all by Fisher’s exact
test).

As shown in Fig. 8, the most common explanations for
the wall motion were ‘‘parsimonious’’, ‘‘heuristic’’, and
‘‘simple-but-invalid’’ explanations. The parsimonious
explanation posited a single hidden object in a location
that would explain the entire particle motion, the heuristic
explanations posited a changing configuration of the
attractors and repellers, and the simple-but-invalid expla-
nations posited a single hidden object in a location that did
not explain the particle motion. The remaining participants
provided less common explanations (n = 0 in the static
condition and n = 3 in the dynamic condition) or indicated
that they could not find an explanation for the particle
motion (n = 2 and n = 0 in the static and dynamic
conditions).

The prevalence of the simple-but-invalid explanations
raises the possibility that some participants preferred pro-
viding an incomplete explanation to providing no explana-
tion at all. Other considerations suggest, however, that this
preference—to the extent that it existed—was not wide-
spread. The experimental instructions encouraged partici-
pants to use the ‘‘no explanation’’ response whenever
appropriate, and many participants used this option at



Fig. 8. These heatmaps show the most common explanations for the wall, centering, and curved motions. For each explanation, the first and second
heatmaps correspond to the initial and final configurations of the attractors and repellers. The number of responses represented by each explanation type is
shown in parentheses.
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some point in the experiment: 14 out of 19 and 5 out of 19
participants did so in the static and dynamic conditions,
respectively.

The most common explanations for the centering
motion were ‘‘parsimonious’’ explanations, which posited
two repellers at the top and bottom of the arena or two
attractors at the left and right of the arena, and ‘‘disappear-
ance’’ explanations, which posited a single attractor or
repeller that disappeared as the particle approached the
center of the arena. The remaining participants either pro-
vided uncommon explanations (n = 3 and n = 4 in the static
and dynamic conditions) or failed to find an explanation
(n = 2 and n = 0 in the static and dynamic conditions).

The most common explanations for the curved motion
were ‘‘parsimonious’’ explanations. Some of these explana-
tions posited a repeller along the left wall of the arena, and
the rest posited a repeller below the bottom wall of the
arena. Critically, the repeller in these remaining explana-
tions was displaced some distance from the bottom wall
of the arena. Because this displacement would have led
the repeller to exert less of its force in the horizontal plane,
we classified these explanations as parsimonious even
while classifying the standard ‘‘orbiting’’ explanations as
non-parsimonious. (Recall that the standard ‘‘orbiting’’
explanation is only valid under the assumption that the
attractor is stronger than the repeller.) The ‘‘supplemented
parsimonious’’ explanations resembled the parsimonious
explanations but posited additional attractors and repel-
lers. The remaining participants either provided uncom-
mon explanations (n = 5 and n = 8 in the static and
dynamic conditions) or failed to find an explanation
(n = 3 and n = 2 in the static and dynamic conditions).
3.2.2. Prediction phase
Fig. 9 shows the predictions of participants given the

parsimonious explanations of the wall, centering, and
curved motions. As was the case in Experiment 1, partici-
pants usually regarded the parsimonious explanations as
valid: most of the predicted motions closely resembled
the observed motions from the discovery phase. As
expected, the proportion of participants who were classi-
fied as ‘‘parsimonious predictors’’ was similar across the
static and dynamic conditions for any of the prediction
trials, all p’s > .50 by Fisher’s exact test. The predictions
of the non-predictors usually corresponded to the predic-
tions of the non-predictors in Experiment 1: although the
non-predictors did not expect the parsimonious explana-
tions to produce the particle motion from the discoverable
scenes, their predictions often reflected reasonable alter-
native assumptions about the forces involved in the
motions.
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The prediction trials also address the concern that par-
ticipants in the static condition provided the parsimonious
explanation only because they were prevented from pro-
viding other explanations. The bar graphs in Fig. 9 show
that even when the analysis is restricted to participants
who viewed the parsimonious explanations as valid (i.e.,
the predictors), participants in the static condition
remained much more likely to discover (or ‘‘generate’’) a
parsimonious explanation than participants in the
dynamic condition, p < .001 by Fisher’s exact test.

A final noteworthy finding is that a clear majority of
predictors discovered the parsimonious explanation in
the discovery phase. Indeed, the predictors of the wall
and centering motions almost always found a parsimo-
nious explanation for the observed motion. This finding
provides even stronger evidence that the parsimonious
explanation could have been generated by most of the par-
ticipants in the dynamic condition and by most of the par-
ticipants in Experiment 1.

3.2.3. Evaluation phase
As expected, the parsimonious explanations were usu-

ally endorsed by the predictors and often rejected by the
non-predictors (see the ‘‘endorsed’’ bars in Fig. 9). When
choosing between explanations, therefore, our participants
reasoned in a manner that was consistent with inverse
reasoning.

3.3. Discussion

When asked to explain a particle motion, our partici-
pants often considered a surprisingly limited set of possi-
ble explanations. The primary evidence for this
conclusion is that participants in the dynamic condition
often failed to consider the parsimonious explanations—
explanations that the participants easily could have dis-
covered had they only searched for them. This finding pre-
sents a serious problem for the computational-level
inverse reasoning account, which does not allow for the
possibility that participants will fail to identify the best
explanations for a particle motion.

The process-level inverse reasoning account, however,
does allow for the possibility that people will fail to con-
sider some explanations on discovery trials (see Fig. 2).
Under this process-level formulation, inverse reasoning
explains how people evaluate explanations even if it does
not explain how people decide which explanations to con-
sider in the first place. Yet there is reason to question even
this narrow formulation. In particular, recall that partici-
pants in Experiment 1 occasionally generated explanations
that seemed invalid according to their own forward infer-
ences, which would be incompatible with both the
computational- and process-level formulations of the
inverse reasoning account. Experiment 3 sought to investi-
gate this issue in greater detail.
4. Experiment 3

In Experiment 3, we investigated whether people can be
induced to provide explanations that do not actually
explain the particle motion. We hypothesized that this sort
of situation might arise when people reflexively accept
heuristically-generated explanations and fail to check the
validity of those explanations by performing a forward
inference. Some of the participants in Experiment 1, for
example, explained the wall motion by positing an expla-
nation similar to the ‘‘lure’’ explanation in the first row
and third column of Fig. 10. Although this explanation
may seem compelling at first glance, deeper reflection
reveals that it is invalid: the simultaneous presence of
the attractor and repeller would produce a curved motion
rather than the linear one that was observed in the wall
motion. Given the methodological limitations of
Experiment 1, it was not possible to confirm whether the
participants would have recognized this explanation as
invalid when asked to make a forward inference. Our main
objective in Experiment 3 was to show that people some-
times provide invalid explanations and only recognize
the problems with these explanations when explicitly
asked to carry out forward inferences. This finding would
provide evidence against both the computational- and pro-
cess-level formulations of the inverse reasoning account.

The first column of Fig. 10 shows the five focal scenes
from the discovery phase in Experiment 3. The wall, cen-
tering, and curved motions were similar to the motions
from the previous experiments. The centering motion in
the present experiment, however, involved two particles
moving toward the center of the arena. In addition, the
scene for the centering motion was cut short: participants
were informed that the camera malfunctioned after a cer-
tain snapshot and that no further snapshots were taken.
The other two motions were novel. The split motion
involved two particles that traveled in opposite directions,
and the lane motion involved a particle that traveled
upward and then leftward in two narrow lanes. The second
column of Fig. 10 shows some of the simplest possible con-
figurations that explain these particle motions. These
explanations are analogous to the parsimonious explana-
tions in the previous experiments, and we expected that
participants would often fail to generate them in the dis-
covery phase.

The discovery scenes were designed so that each scene
had a simple but flawed ‘‘lure’’ response (see the third col-
umn of Fig. 10). Each lure corresponded to an invalid appli-
cation of an otherwise reasonable heuristic. Note, for
example, that the lures for the wall, centering, split, and
lane motions (rows (a), (b), (d), and (e)) could have been
generated by applying a heuristic in which a stationary
hidden object is placed along each linear particle tra-
jectory. Yet none of these lures would actually explain
the discovery scenes: the wall- and centering-motion lures
(rows ‘‘a’’ and ‘‘b’’) would have produced curved particle
motions, and the split- and lane-motion lures would have
produced particle motions in which the particles would
have moved toward the closest attractor. The curved-
motion lure (row ‘‘c’’) is only valid under the assumption
that the attractor exerts a greater force on the particle than
the repeller. Because participants in Experiment 3 were
explicitly instructed that closer attractors and repellers
always exerted a greater force on a particle than more



Fig. 9. Summary of the prediction and evaluation responses for the (a) wall, (b) centering, and (c) curved motions. For each scene, participants were
classified as ‘‘predictors’’ or ‘‘non-predictors’’ depending on whether they predicted that the parsimonious explanation would produce the motion observed
in the discovery phase. The arena figures show the predicted particle paths provided by the participants and the bar graphs show the proportion of
participants who generated and endorsed parsimonious explanations in the discovery phase and evaluation phases, respectively. Gen. = generated;
End. = endorsed.
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distant attractors and repellers, this lure response was not
a valid explanation in Experiment 3.

We expected that some participants would provide
erroneous lure responses for the discovery scenes in
Experiment 3. To confirm that these responses were inva-
lid even according to the participants’ own forward infer-
ences, we asked participants to predict the motion of the
particle given their own explanations for each discovery
scene.

4.1. Method

Except where noted, the method was identical to the
method from Experiment 2.

4.1.1. Participants
Twenty-three undergraduates from Carnegie Mellon

University participated for course credit.

4.1.2. Materials and procedure
In addition to the five focal particle motions scenes

depicted in Fig. 10, there were ten ‘‘filler’’ particle motions.
To make it more difficult for participants in the prediction
phase to simply recall the motion from the corresponding
discovery scene, five of the filler motions were matched
to the five focal motions: the particle motions in these
matched scenes differed from those in the focal scenes,
but both scenes began with the same initial particle
configuration. We hoped that this design would force par-
ticipants to make a genuine forward inference in the pre-
diction phase.

4.1.2.1. Discovery phase. Participants viewed the five dis-
covery scenes from Fig. 10 and ten filler discovery scenes.
Participants were instructed that the configuration of
attractors and repellers remained the same throughout
every particle motion, and the response interface was
modified accordingly. More specifically, rather than dis-
playing specific snapshots from the relevant discovery
motion, as in the previous experiments, the response dis-
play simply summarized the motion by showing the path
that each particle followed, as well as the initial and final
locations of the particles. Participants were asked to pro-
vide the single best explanation for the particle motion.

Note that the lure responses for the centering and split
motions (rows ‘‘c’’ and ‘‘d’’ in Fig. 10) might be valid under
the assumption that one or the attractors was ‘‘stronger’’
than the other. To exclude this possibility, participants
were instructed that each hidden object had the same
power and that a closer hidden object will always have a
stronger influence on a particle than a more distant hidden
object.

4.1.2.2. Prediction phase. In the prediction phase, partici-
pants made two predictions for each discovery scene.
One of these predictions was made for a scene that



Fig. 10. The (a) wall, (b) centering, (c) curved, (d) split, and (e) lane
motions, along with valid explanations for those motions, and simple-
but-flawed ‘‘lure’’ responses. The circles within the arenas represent the
initial locations of the particles, and the circles outside the arenas
represent attractors (white circles) and repellers (black circles). The ‘‘x’’s
for the centering motion denote the point in the particle motion at which
participants were informed that the camera had malfunctioned.

Fig. 11. Particle motions predicted by participants when given their own
explanations for the (a) wall, (b) centering, (c) curved, (d) split, and (e)
lane motions. Participants were classified as ‘‘predictors’’ when the
predicted particle motions were consistent with the actual particle
motions from the discovery scenes.
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corresponded to a rotated version of the explanation that
the participant had provided in the discovery phase. The
rotation, which was either 90� or 270�, was intended to
make it more likely that participants would respond by
making a forward inference rather than by recalling and
copying the motion from the relevant discovery scene.
The other prediction trial for each focal discovery scene
corresponded to rotated versions of the valid explanations
depicted in Fig. 10.

4.1.2.3. Evaluation phase. On the focal trials in the evalua-
tion phase, participants chose between their own explana-
tions and the simple, valid explanations in Fig. 10.

4.2. Results

Our primary finding is that participants often provided
explanations during the discovery phase that were
inconsistent with their forward inferences during the pre-
diction phase. Fig. 11 shows the particle motions that the
participants predicted when provided with their own



Fig. 12. The most common explanations for the wall, centering, curved,
split, and lane motions. Note that ‘‘lure’’ responses were somewhat
common: they were often offered for the centering motion and occasion-
ally offered for the wall, split, and lane motions. The ‘‘modified’’ lures
resembled the lures but posited additional attractors and repellers.
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explanations for the particle motions in the discovery
phase. Note that many of these predicted motions were
inconsistent with the actual motion that was supposedly
being explained.

4.2.1. Discovery phase
Fig. 12 shows the most common explanations for each

focal discovery scene. Note that lure responses were some-
what common for most of the discovery scenes. This result
suggests that some participants provided explanations that
they would have recognized as erroneous had they
checked them by carrying out a forward inference.
Fig. 12 also shows that, as expected, participants rarely
provided one of the simplest possible explanations that
actually explained the particle motion (see the ‘‘simplest
valid’’ explanations).

Among the other explanations, the most common
explanations were ‘‘modified lure’’ explanations. These
explanations resembled the ‘‘lure’’ responses but posited
additional hidden objects. The additional hidden objects
often represented efforts to address the problems of the
standard lure response. For the split motion, for example,
the most common response posited a single attractor at
the right and two attractors at the left; the additional
attractor at the left might explain why the leftmost particle
traveled to the left. The responses that are not represented
in Fig. 12 were either explanations that were unusual or
difficult to categorize or trials on which the participant
did not find an explanation. There were 5 uncategorized
responses for the wall motion, 5 for the centering motion,
10 for the curved motion, 2 for the split motion, and 3 for
the lane motion. There were two ‘‘no explanation’’
responses for the wall motion, two for the centering
motion, two for the curved motion, three for the split
motion, and one for the lane motion.

4.2.2. Prediction phase
Fig. 13 shows the predicted particle motions that par-

ticipants provided when given their own explanations
from the discovery phase, conditional on the type of expla-
nation that was provided. Although many of the predicted
motions resembled the actual motions from the discovery
phase, many of the predicted motions did not. This was
especially apparent among the participants who generated
the wall-, centering-, and split-motion lures (see the ‘‘lure’’
predictions in rows ‘‘a’’, ‘‘b’’, and ‘‘d’’). In particular, five out
of the six participants who generated the wall-motion lure
predicted that it would produce a curved particle motion
(in contrast to the straight-line motion that the lure was
supposed to explain). Likewise, five out of the thirteen par-
ticipants who generated the centering-motion lure pre-
dicted that it would produce curved particle motions (in
contrast to the observed straight-line motions). Finally,
all of the four participants who generated the split-motion
lure predicted that both of the particles would travel to the
same side of the arena (in contrast to the observed motion,
in which the particles traveled to different sides of the
arena). The ‘‘explanations’’ that these participants gave
were therefore erroneous, even by the participants’ own
accounts. It was only when these participants were asked
to make a forward inference given their own explanations
that they belatedly recognized the problems with their
explanations. This result suggests that at least some par-
ticipants neglected to check the validity of the explana-
tions that they provided in the discovery phase, and only
recognized the problems with these explanations after per-
forming a forward inference in the prediction phase.



Fig. 13. The particle motions that the participants predicted given their own explanations for the (a) wall, (b) centering, (c) curved, (d) split, and (e) lane
motions. The predictions are displayed as a function of the discovery scene, the type of explanation provided, and consistency of the predicted motion with
the actual motion from the corresponding discovery scene (‘‘predictors’’ vs. ‘‘non-predictors’’). Note that a substantial minority of participants were
classified as non-predictors.
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Participants were also asked to make predictions given
the valid explanations from Fig. 10. As expected, these
predicted particle motions generally resembled the actual
particle motions from the discovery phase (see Fig. 14 for
details). As in the analyses for the previous experiments,
we classified participants as ‘‘predictors’’ or ‘‘non-predic-
tors’’ on the basis of these responses.
4.2.3. Evaluation phase
As expected, predictors were much more likely to

endorse one of the simplest possible valid explanations
in the evaluation phase than to generate one in the discov-
ery phase (see Fig. 14), p < .001 by Fisher’s exact test. This
finding is consistent with the conclusion from Experiments
1 and 2 that participants often failed to consider the best
explanations during the discovery phase.
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4.3. Discussion

Many of the explanations offered for the particle
motions in the discovery phase were flawed, and many of
the participants who provided those flawed explanations
were capable of recognizing the problems with the expla-
nations (as evidenced by their subsequent inferences in
the prediction phase). So why did participants provide
these explanations anyway? One possibility is that partici-
pants knew that the explanations were flawed but pro-
vided them anyway. This possibility seems unlikely,
however. To begin with, participants were not required
to generate an explanation: they were encouraged to use
the ‘‘no explanation’’ button whenever they could not find
an explanation, and 10 out of the 23 participants used this
option at least once during the experiment. Additional evi-
dence against this possibility comes from a debriefing
question which asked participants whether they ever pro-
vided an ‘‘inadequate or incorrect’’ explanation, and, if so,
whether they knew that the explanation was inadequate
or incorrect at the time that they provided it. Fourteen par-
ticipants reported providing an invalid explanation, and
only two of those participants claimed that they knew that
the explanation was invalid at the time that they provided
it. A more likely possibility is that participants simply
failed to recognize the problems with the explanations at
the time that they provided them. These participants pre-
sumably generated the explanations heuristically and then
failed to check those explanations by performing the
corresponding forward inference. Our data therefore sug-
gest that people sometimes make backward inferences
without relying on forward inference at all, which implies
that the processes that support forward and backward
inference are more distinct than the inverse reasoning
account allows.
7 We thank an anonymous reviewer for identifying this possibility.
5. General discussion

Our experiments showed that the psychological pro-
cesses that support discovery, prediction, and evaluation
are less closely intertwined than the inverse reasoning
account implies. Many participants in Experiment 1, for
example, enthusiastically endorsed parsimonious explana-
tions in the evaluation phase even while failing to generate
those explanations in the discovery phase. While this find-
ing would not be surprising if the parsimonious explana-
tions were complicated or obscure, Experiment 2
suggested that the parsimonious explanations were rela-
tively accessible: participants were easily able to discover
them when heuristic explanations were not available.
Experiment 2 therefore suggests that participants only
failed to discover the parsimonious explanations because
they rarely considered more than a few possible explana-
tions of the particle motions. Experiment 3 exposed an
even more fundamental dissociation between discovery
and prediction by showing that participants sometimes
‘‘discovered’’ explanations that did not actually predict
the to-be-explained particle motions. Taken together,
these results pose a serious challenge for the inverse rea-
soning approach to object discovery.
5.1. The computational- and process-level inverse reasoning
accounts

Inverse reasoning can be formulated as either a
computational-level account about which explanations
people will generate or as a process-level account that
characterizes the psychological processes that generate
these explanations. Our experiments show that neither of
these formulations provides a complete psychological
account of backward inference. The computational-level
inverse reasoning account predicts that the reasoner will
identify the best explanation of the available observations.
Experiments 1 and 2, however, show that people some-
times fail to consider the best explanations for the observa-
tions. Instead, participants in these experiments
considered a surprisingly small set of possible explanations
for the particle motions, and their decisions about which
explanations to consider strongly influenced which expla-
nations they ultimately provided. A complete account of
object discovery will therefore need to address how par-
ticipants decide which explanations to consider.

The inverse reasoning account can also be formulated as
a process-level account, and rational process models pro-
vide some prominent examples of this approach (e.g.,
Sanborn et al., 2010; see also Brown & Steyvers, 2009;
Ullman et al., 2010). This process-level formulation, how-
ever, also seems inconsistent with our data. The core claim
of the process-level account is that forward and backward
inference are closely connected, but the results from
Experiment 3 show that forward and backward inference
are supported by distinct psychological processes in at
least some settings. The finding that people sometimes
generate invalid explanations challenges both computa-
tional- and process-level formulations of the inverse rea-
soning account.

There is, however, at least one version of the inverse
reasoning account that is compatible with Experiment 3.
It is possible that there are multiple cognitive systems that
carry out forward inference. Inverse reasoning engages one
of these systems, and a different system is engaged when
people are asked directly to solve forward inference tasks.
If these two systems operate according to different princi-
ples, then forward inference and backward inference tasks
may sometimes produce incompatible results even if back-
ward inference is carried out by inverse reasoning.7

There is some precedent for the idea that there are mul-
tiple systems for forward inference. When people are
shown a ball exiting from a curved tube, the predictions
they make about the ball’s subsequent trajectory can vary
depend on whether they are asked to sketch this trajectory
or to choose among several simulated trajectories (Kaiser,
Proffitt, & Anderson, 1985). Although it is plausible that
conceptual and perceptual-motor tasks engage different
systems for forward inference, all of the tasks in our
experiments were high-level reasoning tasks, and it seems
less plausible that these tasks engaged different systems
for forward inference. In addition, the inverse reasoning
account is appealing in part because it provides a unified



Fig. 14. Inferences about the (a) wall-, (b) centering-, and (c) curved-, (d) split-, and (e) lane-motion scenes in Experiment 3. For each scene, participants
were classified as ‘‘predictors’’ or ‘‘non-predictors’’ depending on whether they predicted that the valid explanation from Fig. 10 would produce the actual
motion observed in the discovery phase. The bar graphs show the proportion of participants who generated and endorsed one of the simplest possible valid
explanations. Gen. = generated; End. = endorsed.
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account of forward and backward inference. Adjusting the
account by invoking multiple systems for forward infer-
ence seems no more parsimonious than simply postulating
that forward and backward inference are sometimes car-
ried out by different systems.

Our preferred way to accommodate the results of
Experiment 3 is depicted in Fig. 15. The figure presents
an account of backward inference that reserves a role for
inverse reasoning (shown as the dashed rectangle in
Fig. 15), because inverse reasoning is probably involved
in many backward inferences. Recall that inferences on
the evaluation trials, for example, were largely consistent
with the inverse reasoning account. Fig. 15, however, sug-
gests that inverse reasoning plays a more limited role in
backward inference than one might initially expect.
Under this view, decisions about which explanations to
consider (see the arrow from H to H0) are among the most
important steps in discovering explanations: given that our
participants often seemed to consider no more than a few
possible explanations of a particle motion, most of the
inferential ‘‘work’’ is done by the psychological processes
that generate those explanations rather than by the psy-
chological processes that select among those explanations.
The modified view of backward inference also allows that
people may evaluate potential explanations without per-
forming forward inferences (i.e., without using inverse rea-
soning). In particular, this view suggests that people
sometimes generate explanations without performing
any forward inferences at all (see the bold paths in
Fig. 15). This sort of situation might arise when people



Fig. 15. An outline of the psychological processes that support object discovery. The dashed rectangle shows the scope of the inverse reasoning account, and
the bold paths represent inferential processes that are not explained by inverse reasoning. d = the data; H = the full hypothesis space; H0 = a subset of the full
hypothesis space; {P(h0)}, {P(d|h0)}, and {P(h0|d)} = collections containing the prior probabilities, likelihoods, and estimated posterior probabilities of each
hypothesis in H0 .
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accept on faith that certain heuristics for generating possi-
ble explanations will produce valid explanations. This
represents a reasonable strategy so long as people under-
stand when the heuristics produce valid explanations,
but the results of Experiment 3 suggest that people some-
times apply these heuristics in situations where they are
not appropriate.

5.2. The problem-solving account of discovery

Although the view of object discovery in Fig. 15 is not
entirely compatible with the inverse reasoning account, it
can be accommodated by the problem-solving account of
scientific discovery. The problem-solving account
characterizes scientific discovery as a search through a
space of possible hypotheses (Klahr & Dunbar, 1988;
Langley et al., 1987). Some search algorithms can be
viewed as process-level implementations of the inverse-
reasoning account, and algorithms of this kind can be
viewed as rational process models (Griffiths et al., 2012).
The problem-solving approach, however, also allows for
search strategies that are not directly related to inverse
reasoning, and that therefore lie outside the class of
rational process models. This flexibility allows the prob-
lem-solving approach to explain some experimental find-
ings that are inconsistent with rational process models
and inverse reasoning. For example, consider the particle
motions in Experiment 3 that involved two particles (the
‘‘centering’’ and ‘‘split’’ motions). Faced with these
motions, some participants provided ‘‘lure’’ responses that
naively combined an explanation for the motion of one of
these particles with an explanation for the motion of the
other particle. This sort of mistake is inconsistent with
inverse reasoning, but is easily explained as the result of
a ‘‘divide-and-conquer’’ search algorithm.

When formulated in the most general terms, the prob-
lem-solving account seems indisputable but not especially
informative. Any process for generating an explanation can
be characterized as a search of some kind, and the real
question is whether some of the specific search strategies
described in the problem-solving literature are able to
account for our data. To our knowledge, there is no existing
computational model of problem solving that can be
applied to our experiments right ‘‘out of the box,’’ but the
rest of this section discusses several specific proposals
from the problem solving literature that are relevant to
our work.

A key element of any search algorithm is a stopping cri-
terion that specifies when the algorithm should terminate
the search and return the best solution found so far. The
literature on problem-solving proposes that people often
‘‘satisfice’’ and terminate their search after finding a solu-
tion that seems acceptable even if it is not optimal
(Simon, 1955). This proposal is consistent with our finding
that participants often generated explanations that were
valid in the sense that they accounted for the available
observations, but not as parsimonious as they might have
been. Our results therefore suggest that our participants
often satisficed and terminated their search for explana-
tions after generating a single valid candidate.

The problem-solving literature includes several specific
proposals about mechanisms for searching through a space
of hypotheses. According to Simon et al. (1981), the three
most common mechanisms are generate-and-test, heuris-
tic search, and means-ends analysis, and we consider each
one in turn. The generate-and-test approach repeatedly
generates candidate explanations then checks them to
see whether they explain the available data. This process
of checking an explanation relies on forward inference,
and the generate-and-test approach can therefore be
viewed as a form of inverse reasoning. For example, if each
explanation is either consistent or inconsistent with the
data, and if explanations are generated in order of descend-
ing prior probability, then the first explanation accepted by
a generate-and-test strategy will be the explanation with
highest posterior probability. Given the close relationships
between generate-and-test and inverse reasoning, it seems
unlikely that a generate-and-test approach will provide a
complete account of our data.

Heuristic search involves proposing new hypotheses by
modifying hypotheses that have already been considered.
In the context of our experiments, a participant might
begin with a focal hypothesis that does not posit any
attractors or repellers. In this context, heuristic search
might involve searching for a way to reduce the discrep-
ancy between the focal hypothesis’s predicted motion
and the observed motion. Our participants often seemed
to follow this strategy. For example, consider the steps



Fig. 16. Initial steps taken to construct explanations for the lane motion from Experiment 3.
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taken by our participants to construct explanations for the
lane motion from Experiment 3 (see Fig. 16). As a first step
in constructing an explanation, many of our participants
placed an attractor near the top of the arena (see the
uppermost arena in the second column of Fig. 16).
Although the existence of an attractor in this location
would explain the initial motion of the particle, placing
an attractor in that location represents a false start with
respect to constructing an explanation for the entire parti-
cle motion. Recognizing this, many participants who
placed this attractor subsequently ‘‘backtracked’’ by eras-
ing the particle and starting the search anew (see the
uppermost arena in the third column of Fig. 16).8 In any
case, the prevalence of this false start suggests that many
participants rely on ‘‘local’’ heuristic search strategies to
construct explanations.

Means-ends analysis is a special case of heuristic search
in which the search is guided by introducing subgoals
whenever the current goal cannot be achieved in a single
step. It seems likely that our participants relied on
means-ends analysis in cases in which the observed parti-
cle motion could be divided into several pieces. For exam-
ple, responses to the lane-motion scene suggest that
participants often viewed explaining the upward and left-
ward motions of the particle as two independent sub-prob-
lems. More generally, means-ends analysis seems
applicable to any of the discovery scenes in which there
were multiple particles in motion (e.g., the ‘‘centering’’
and ‘‘split’’ motions of Experiment 3) or in which the
motion of a single particle could be subdivided into distinct
phases (e.g., the ‘‘wall’’ motions).
8 Of the four participants who did not backtrack, three provided
explanations corresponding to the second arena in the third column of
Fig. 16 (i.e., the ‘‘lure’’ response). The other participant placed three
attractors at the left end of the ‘‘lane’’.
Although problem-solving strategies such as heuristic
search and means-ends analysis seem broadly consistent
with our data, developing a computational framework that
can account for the variety of responses observed across our
experiments appears to be a substantial challenge. A com-
prehensive account of our data will probably need to incor-
porate ideas that go beyond general-purpose methods such
as heuristic search and means-end analysis. Experts often
make extensive use of domain-specific knowledge when
solving problems (e.g., Chi, Feltovich, & Glaser, 1981;
Larkin et al., 1980; Patel & Groen, 1986), and our participants
may also have relied on domain-specific knowledge. For
example, the ‘‘orbiting’’ explanation for the curved motion
stimulus in Fig. 8 may have been inspired by prior knowl-
edge about systems in which one object (e.g. the earth)
orbits another (e.g. the sun). We therefore believe that
developing a problem-solving account of our results may
be possible, but is by no means simple.

5.3. How can the successes and failures of the inverse
reasoning account be reconciled?

Although we have argued that the inverse reasoning
account has limitations as a psychological model of back-
ward inference, the inverse reasoning account often
explains people’s inferences well. How are we to reconcile
the successes and failures of the inverse reasoning
account? A partial answer is that the problem of hypothe-
sis generation is simply more acute in some inferential
tasks than in others. Consider the comparison between
our object-discovery task and the task where participants
are asked to infer the mass ratio of two colliding objects
(e.g., Sanborn et al., 2013). Although there are an infinite
number of possible explanations in both tasks, the problem
of generating the best possible explanations is con-
siderably less daunting in the object-collision task. When
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faced with the mass-ratio task, for example, the reasoner
might imagine what sort of collision would have occurred
for a particular mass ratio. By comparing that imagined
collision to the actual collision, the reasoner would be able
to decide whether the given mass ratio is too small or too
large, allowing the reasoner to modify the proposed mass
ratio accordingly. The iterative application of this hill-
climbing procedure would allow the reasoner to quickly
discover the mass ratio that best explains the observed
object collision. In our object-discovery task, in contrast,
the prospects for finding a procedure that efficiently iden-
tifies the best explanation seem dim.

Expertise and experience undoubtedly play a further
role in explaining the successes of the inverse reasoning
account. Many of the most successful applications of the
inverse reasoning account involve explaining inferences
that people make in their everyday lives. Perhaps extensive
experience with these tasks has taught people which
explanations should be considered in any given situation,
much as expert problem solvers know which problem-
solving strategies are appropriate to which problems
(e.g., Chi et al., 1981; Patel & Groen, 1986). Some inferences
that resemble inverse reasoning might therefore be attrib-
uted to the reasoner’s considerable experience and exper-
tise with those tasks rather than to inverse reasoning in
and of itself. This sort of account—wherein forward and
backward inference are performed by separate psychologi-
cal processes, but in which extensive training allows the
processes that support backward inference to approximate
inverse reasoning—is often proposed to explain motor
planning and control (e.g., Davidson & Wolpert, 2005;
Flanagan, Vetter, Johansson, & Wolpert, 2003; Jordan &
Rumelhart, 1992; Kawato, 1999).

5.4. Conclusion

The inverse reasoning approach has been widely used
to account for inductive reasoning, but our results suggest
that this approach is incomplete at best as a psychological
account of object discovery. The approach predicts that
discovery, evaluation, and prediction should be closely
related and mutually consistent, but our experiments
demonstrate that these inferences are often incompatible.
In particular, we found that people often endorsed expla-
nations that they were unable to generate themselves.
This inconsistency arises because generating an explana-
tion appears to be a much more challenging problem than
assessing the merits of several pre-specified explanations.

Our findings underline the importance of understand-
ing how people search the hypothesis space of possible
explanations. Our experimental setting focused on infer-
ences about object dynamics, and we found that partici-
pants often relied on domain-general strategies such as
heuristic search and on domain-specific strategies such
as placing unobserved objects directly in line with the
motion of observed objects. Different strategies may be
more or less useful in different settings, and developing a
comprehensive account of the psychological processes that
support object discovery will require multiple settings to
be explored in detail.
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