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Abstract 

The process of generating a new hypothesis often begins with 
the recognition that all of the hypotheses currently under 
consideration are wrong. While this sort of falsification is 
straightforward when the observations are incompatible with 
each of the hypotheses, an interesting situation arises when 
the observations are implausible under the hypotheses but not 
incompatible with them. We propose a formal account, 
inspired by statistical model checking, as an explanation for 
how people reason about these probabilistic falsifications. We 
contrast this account with approaches such as Bayesian 
inference that account for hypothesis comparison but do not 
explain how a reasoner might decide that the hypothesis space 
needs to be expanded. 
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Introduction 

Many modern scientific disciplines are characterized by 

strange and unintuitive theories that previous generations of 

scientists never would have imagined. On a less dramatic 

scale, people often generate inventive explanations in their 

everyday lives. The existence of these unintuitive theories 

and inventive explanations raises an interesting question: 

how are these new theories and explanations discovered? 

In many cases, the process of generating a new hypothesis 

starts when the reasoner decides that all of the hypotheses 

currently under consideration are wrong. In some cases, the 

available evidence is incompatible with every hypothesis 

under consideration, and this decision is straightforward. In 

other cases, however, the available evidence is implausible 

under, but not strictly incompatible with, the hypotheses. In 

cases like these, a reasoner may engage in hypothesis space 

checking to decide whether the hypothesis space is adequate 

or needs to be expanded.  

Although psychologists have explored many approaches 

to hypothesis testing, most of these approaches are unable to 

account for hypothesis space checking. Bayesian accounts, 

for instance, are able to specify the relative strength of a 

hypothesis within the hypothesis space, but they do not 

provide criteria for evaluating the hypothesis space itself.  

Statisticians, however, have developed various measures 

that quantify the extent to which observations are surprising 

under a given hypothesis or hypothesis space. In this paper, 

we investigate the possibility that formal measures of this 

kind can help to explain how people decide that all of the 

hypotheses in their current hypothesis space are probably 

wrong. 

Hypothesis space checking 

Figure 1 illustrates the kind of situation where hypothesis 

space checking may be required. There is a universe U of 

possible explanations for the given observations, but the 

hypotheses available to the reasoner fall within a hypothesis 

space H that is a proper subset of U. It is possible, of course, 

that the true explanation is not in H; the ability to determine 

whether this is the case would be useful. 

 

 
Figure 1: The universe U includes all possible hypotheses, 

and hypothesis H is the subset of these hypotheses that are 

currently available to the reasoner. 

 

In principle, the adequacy of H could be evaluated by 

computing whether the available observations are better 

explained by hypotheses that lie within or outside H. 

Bayesian inference provides one way to formalize this sort 

of comparative hypothesis testing. Bayes’ theorem 

establishes that given the observed data d, the odds that H 

contains the true explanation are: 

 
𝑃(𝐻|𝑑)

𝑃(�̅�|𝑑) 
=  

𝑃(𝑑|𝐻)𝑃(𝐻)

𝑃(𝑑|�̅�)𝑃(�̅�)
.               (1) 

 

Equation 1 shows that the probability that 𝐻 contains the 

true explanation depends on (1) the relative probabilities of 

the data under 𝐻 and under its complement  �̅� and (2) the 

relative prior probabilities of 𝐻 and  𝐻. 

Although Equation 1 is appealing in principle, it is 

impossible to apply. Given that 𝐻 consists of hypotheses 

that are unavailable to the reasoner, the term 𝑃(𝑑|𝐻) will be 

impossible to compute (Earman, 1990, Ch. 7; Salmon, 

1990). Consider the problem faced by a Newtonian physicist 

attempting to explain the anomalous precession of 

Mercury’s perihelion. Although the physicist might be able 

to estimate 𝑃(𝑑|𝐻) by considering various Newtonian 

explanations, estimating 𝑃(𝑑|𝐻) has a paradoxical flavor: 



how would the physicist compute probabilities with respect 

to theories he cannot currently imagine? 

The paradox just described applies to any account 

(Bayesian or otherwise) that uses comparative hypothesis 

testing to address the problem defined by Figure 1. We 

therefore propose that this problem can only be addressed 

by non-comparative accounts of hypothesis testing in which 

the current hypothesis space is evaluated not in relation to 

specific competitors but on its own merits. In statistical 

practice, this sort of evaluation is often referred to as model 

checking or goodness-of-fit testing, and it typically involves 

comparing the actual observations to the expected 

distribution of the observations given the current hypothesis 

space. To the extent that the actual observations seem 

surprising in this context, there is an incentive to search for 

new hypotheses. 

Comparative and non-comparative hypothesis testing 

seem to address distinct problems in that comparative 

hypothesis testing seems most useful for selecting among 

the hypotheses in H and non-comparative hypothesis testing 

seems most useful for checking H itself (for similar 

proposals, see Bayarri & Berger, 1999; Gelman & Shalizi, 

2013; Gillies, 2007). We propose that both kinds of 

hypothesis testing are represented among people’s intuitive 

inferences, but in this paper we deliberately focus on a 

situation that calls for non-comparative hypothesis testing. 

A model of non-comparative hypothesis testing 

We propose that intuitive hypothesis space checking 

resembles the process specified in Figure 2. Specifically, we 

propose that people extract the salient or important features 

of the available observations, assess the extent to which 

those individual features are surprising under H, and then 

compute a global measure of surprise. This global measure 

of surprise provides a criterion for deciding whether to 

initiate the search for new hypotheses. 

Figure 2: The reasoner extracts the salient features of the 

observations d, calculates a measure of surprise for each 

feature, and combines the surprise values into a global 

measure SH that captures the extent to which the data are 

surprising given the current hypothesis space H. 

 

Statisticians have proposed various measures of surprise 

(e.g., Bayarri & Berger, 1998; Weaver, 1948), but we focus 

on statistical null hypothesis testing, which is the best-

known statistical procedure that can be used for hypothesis 

space checking. To investigate null hypothesis testing in the 

simplest possible setting, we focus on situations where the 

hypothesis space contains a single focal hypothesis ℎ (i.e., 

where 𝐻 =  {ℎ}), but various generalizations of our 

approach are applicable to composite hypothesis spaces 

(e.g., Bayarri & Berger, 1999; Gelman, Meng, & Stern, 

1996). In null hypothesis testing, the statistician first defines 

a real-valued test statistic 𝑇(𝑑) that measures some property 

of the data; this test statistic can be viewed as one of the 

features in Figure 2. To evaluate the surprise of the observed 

value of the test statistic, the statistician then considers the 

expected distribution of 𝑃(𝑑rep) given ℎ, where 𝑑rep is a 

random variable representing the data that might be 

observed if one were to replicate the “experiment” that 

produced the data. By comparing the observed value of 

𝑇(𝑑) to the expected distribution of 𝑇(𝑑rep) under ℎ, the 

statistician can assess whether 𝑇(𝑑) is surprising under ℎ. If 

the test statistic is defined such that greater values represent 

greater deviations from ℎ, the surprise of 𝑇(𝑑) can be 

summarized by a p-value:  

 

𝑝𝑇(𝑑) =  𝑃[𝑇(𝑑rep) ≥ 𝑇(𝑑) | ℎ].            (2) 

 

Intuitively, the p-value represents the probability that the 

test statistic in the imagined replications would be at least as 

extreme as what was actually observed. Small p-values 

correspond to surprising results where the observations are 

unusually extreme. 

In the final step of Figure 2, the reasoner combines the 

surprise measures for each feature into a global measure of 

surprise. To avoid making assumptions about how people 

integrate surprise ratings across different features, we focus 

on situations where there is a single surprising feature. In 

such situations, it seems reasonable to adopt the surprise 

value for that feature as the global measure of surprise. 

Method 

To evaluate our proposed model of non-comparative 

hypothesis testing, we conducted an experiment in which 

participants learned about the ancient burial sites found on a 

remote island chain. The burial sites were marked by 

“cairns” (rock piles), and each island had been occupied by 

one of two cultures that constructed the cairns using 

different procedures: the “Chaotics” placed a random 

number of boulders in each cairn and the “Numerologists” 

placed a number of boulders in accordance with a 

mathematical function. The instructions explained that the 

Numerologists used different mathematical functions on 

different islands but that the mathematical function was 

always based on the number of people buried at the site. The 

participants were asked to infer which cultural group 

occupied an island from information about the burial sites 

on the island. 

Because the number of possible mathematical functions is 

infinite, we expected that participants would not be able to 

assess every possible explanation for the observations. We 

expected that when faced with this impossible task, 

participants would consider the hypothesis that the Chaotics 

occupied the island as well as various hypotheses where the 



Numerologists occupied the island and used some simple 

mathematical function. Because the materials were designed 

so that no simple mathematical function would explain the 

observed number of boulders at the burial sites, we expected 

that most participants would end up with a hypothesis space 

that contained a single viable hypothesis: the hypothesis that 

the Chaotics occupied the island. We expected that 

participants would check this hypothesis through a 

procedure resembling the one depicted in Figure 2. We 

predicted that when the observations were sufficiently 

surprising, participants would be willing to attribute 

occupancy to the Numerologists. Critically, we expected 

that participants would sometimes make this attribution 

even when they could not identify a single mathematical 

function that the Numerologists might have used. As we 

discuss later, this finding would be difficult to explain as a 

consequence of comparative hypothesis testing. 

The experimental materials were based on three “test 

statistics” that reflected the salient numerical concepts of 

equality and magnitude (see Table 1). The equality test 

statistic, for example, was defined as the count of the burial 

sites that had the same number of people and boulders, and 

we expected participants to be surprised when many of the 

burial sites had the same number of people and boulders.  

 

Table 1: Test statistics 

Name Definition 

Equality number of burial sites where b = p 

Minimum smallest observed value of b 

Repetition frequency count for the most frequent b 

Note. p = the number of people at a burial site; b = the 

number of boulders at a burial site. 

Participants 

Sixty-one undergraduates participated in the experiment for 

course credit. 

Materials 

Table 2 displays the observations presented to the 

participants. In the table and in the rest of the paper, we 

represent burial sites by two numbers separated by a dash, 

with the first and second numbers representing the number 

of people buried and boulders, respectively. Each row of the 

table corresponds to a different island. Twelve of the islands 

were designed to be surprising according to exactly one of 

the test statistics in Table 1 and four additional islands were 

designed to have no surprising features (the “None” 

islands). All of the islands contained either three or six 

burial sites, and the surprising islands were designed so that 

the coincidence involving the test statistic would be either 

moderately (.01 < p < .15) or highly (p < .01) surprising, as 

calculated from Equation 2.  

The rightmost column shows the p-values for each island; 

these p-values summarize how surprising the observations 

would be if the Chaotics occupied the island. The p-values 

were calculated under the assumption that the number of 

boulders at a burial site could range from 1 to 100 (the 

instructions informed participants that this was the case). To 

illustrate, consider the calculation of the p-value for the first 

island. The observed value of the equality test statistic for 

this island was one: there was exactly one burial site that 

had the same number of people and boulders. If the Chaotics 

occupied the island, then the equality test statistic would 

follow a binomial distribution with a probability parameter 

of .01. Consequently, the probability that at least one of the 

burial sites on a three-site island has the same number of 

people and boulders is approximately .0297. 

For the equality and minimum statistics, the four islands 

represented the four possible combinations of surprise 

condition and island size. For the repetition test statistic, we 

did not include a high-surprise island with three burial sites; 

instead, we included two moderate surprise islands with 

three burial sites. The reason for this was that creating a 

high-surprise “repetition” island with three burial sites 

necessitated selecting an island where each burial site had 

the same number of boulders. Because we were interested in 

situations where the participants would not be able to find a 

mathematical function to explain the observations, we chose 

not to present such an island. 

 

Table 2: Experimental materials 

Feature Srprs. Sz. Burial sites p-value 

Equality M 3 20-94, 39-39, 85-78 .0297 

Equality H 3 16-16, 65-65, 49-12 .0003 

Equality M 6 7-62, 33-85, 40-1, 

53-26, 59-59, 94-18 

.0585 

Equality H 6 12-100, 19-42, 21-21,  

32-14, 75-75, 93-56 

.0015 

Minimum M 3 15-86, 63-98, 84-75 .0176 

Minimum H 3 16-92, 42-97, 93-90 .0013 

Minimum M 6 5-67, 24-81, 35-72,  

52-68, 57-93, 83-54 

.0108 

Minimum H 6 13-75, 32-95, 35-98,  

37-80, 72-85, 96-94 

.0003 

Repetition M 3 3-19, 27-84, 74-19 .0299 

Repetition M 3 11-75, 39-28, 80-75 .0299 

Repetition M 6 2-5, 6-97, 31-69,  

59-38, 62-52, 75-52 

.1404 

Repetition H 6 12-98, 15-98, 26-4, 

 45-73, 60-53, 77-98 

.0020 

None - 3 23-18, 40-69, 93-55 - 

None - 3 31-46, 80-24, 94-87 - 

None - 6 1-78, 43-61, 45-12,  

52-35, 83-87, 91-46 

- 

None - 6 1-26, 8-92, 14-36,  

35-20, 40-11, 63-45 

- 

Note. Srprs. = surprise condition; Sz. = island size; M = 

moderate surprise; H = high surprise. 

 

All of the observations were designed so that at most one 

of the test statistics in Table 1 would be surprising at a level 

greater than p = .30. In addition, we controlled for the 

distribution of even and odd numbers and for the correlation 

between the number of people and number of boulders. 



Procedure 

Participants were provided with a cover story that described 

their task and the Chaotics and Numerologists. Participants 

then completed a familiarization trial. On both the 

familiarization and experimental trials, the burial sites were 

represented by “cards” on a computerized display. Each 

card listed one number next to a stick figure and another 

number next to an illustration of a boulder pile. These 

numbers represented the number of people buried at the site 

and the number of boulders in the cairn, respectively. 

Participants were encouraged to re-arrange the cards by 

clicking and dragging them. The interface also provided 

buttons to automatically sort the cards according to either 

the number of people buried or the number of boulders. For 

the practice trial, the three burial sites were 31-1, 48-5, and 

90-4, and participants were told that the island was occupied 

by Numerologists who placed a number of boulders equal to 

the number of prime factors of the number of people buried 

at the site (e.g., because 48 = 3 * 2 * 2 * 2 * 2, the burial site 

with 48 people had 5 boulders). This rule was intended to 

establish that the Numerologists were sophisticated 

mathematicians who had access to a wide variety of 

mathematical properties and rules. In doing so, our goal was 

to establish a universe of possible explanations that would 

be too large to consider in full. 

Participants reported their inferences about which cultural 

group had occupied the island using a seven-point rating 

scale where the leftmost point was labeled “definitely 

Chaotics”, the rightmost point was labeled “definitely 

Numerologists”, and the middle point was labeled “not 

sure”. Responses were coded from -3 (“definitely 

Chaotics”) to 3 (“definitely Numerologists”). Participants 

who indicated that the Numerologists were more likely to 

have occupied the island than the Chaotics were also asked 

to indicate whether they had “discovered ANY function that 

the Numerologists might have used to determine the number 

of boulders.” Participants answering affirmatively were 

asked to describe the function. Finally, at the end of each 

trial, participants were asked to list “any features, 

coincidences, or patterns in the burial sites that would have 

been surprising if the Chaotics occupied the island.” 

Participants were provided with three text input fields and 

could identify up to three features, coincidences, or patterns. 

The responses to this prompt were intended to measure 

whether participants noticed the relevant features or any 

other features of the observations. 

After completing the familiarization trial, the participants 

completed experimental trials for each of the 16 islands 

listed in Table 2. The presentation order was randomized. 

Results 

A preliminary analysis confirmed that participants 

frequently noticed the relevant features. For each feature, a 

majority of the participants listed the feature as surprising 

on at least one of the relevant trials; the proportions were 

.59 for the minimum feature, .72 for the equality feature and 

.66 for the repetition feature. A second preliminary analysis 

confirmed that the islands did not contain many surprising 

features other than the intended relevant features. 

Participants listed other features on only 16.8% of the 

experimental trials. The proportion of  participants listing 

other features was similar across the experimental 

conditions: a logistic regression with categorical predictors 

corresponding to the surprise conditions, the relevant 

features, and the island sizes did not explain a significant 

proportion of the variance in the probability that participants 

noticed other features, R2 = .26, F(5, 8) = 0.55, p = .74. 

To evaluate our formal approach we compared the model-

derived p-values and the mean culture ratings. Because 

people often evaluate probabilities on a logarithmic scale 

(e.g., Gonzalez & Wu, 1999), we adopted the logit (i.e., the 

log-odds) of the island p-values as the model’s measure of 

surprise (lesser values corresponded to greater surprise). 

When calculating the mean culture ratings for each 

condition, we excluded any culture ratings for which the 

participant who provided the rating failed to identify the 

relevant feature as surprising at any point during the 

experiment. The rationale for this exclusion is that a 

participant who did not notice the relevant feature could not 

have been surprised by it.  

 
Figure 3: The culture rating as a function of the logit of the 

p-value. Different features are represented by different 

marker shapes, different island sizes are represented by 

different marker sizes (large markers correspond to islands 

with six burial sites), and different surprise conditions are 

represented by different shadings (black markers correspond 

to high-surprise islands). 

 

Figure 3 shows the comparison of the p-values and the 

mean culture ratings. A linear regression confirmed that the 

logit of the p-values explained a significant proportion of 

the variance in the ratings, R2 = .82, F(1, 10) = 44.2,  p < 

.001. This relationship was essentially unchanged even 

when culture ratings were included for participants who 

failed to notice the relevant features, R2 = .77, F(1, 10) = 

33.83,  p < .001. Inspection of Figure 3 also suggests that 

the islands with six burial sites may have been viewed as 

less surprising than the islands with three burial sites. The 

statistical significance of this finding was confirmed by a 

multistep regression that showed that island size predicts 

variance in the culture ratings above and beyond the 

variance explained by the logit of the p-values, ΔR2 = .14, 



F(1, 9) = 25.7, p = .001. This finding may reflect a general 

tendency to underestimate the extent to which deviations 

from the mean become increasingly surprising for larger 

samples (Kahneman & Tversky, 1972). 

Although our participants compared hypotheses in the 

sense that they reported whether the Chaotics or 

Numerologists occupied an island, it seems difficult to 

explain their inferences as the product of what we have 

called comparative hypothesis testing. Consider, for 

example, the difficulties that arise in explaining the culture 

ratings by appealing to Equation 1, which in the context of 

our experiment involves the comparison of 𝑃(𝑑|Chaotics) 

and 𝑃(𝑑|Numerologists). Note that 𝑃(𝑑|Chaotics) 

depends only on the number of burial sites on the island: for 

any island with three burial sites, for example, 

𝑃(𝑑|Chaotics) is (1 100⁄ )3. Thus, if the participants’ 

inferences were indeed based on Equation 1, then the 

differences in the culture ratings must have arisen primarily 

because of differences in 𝑃(𝑑|Numerologists).  

If 𝑃(𝑓|Numerologists) is a prior distribution over 

specific functions 𝑓, then  

 

𝑃(𝑑|Numerologists) = ∫ (𝑑|𝑓)𝑃(𝑓|Numerologists)
𝑓

      (3) 

 

The integral in Equation 3 will be large to the extent that 

there are many functions that are plausible a priori 

(𝑃(𝑓|Numerologists) is high) and consistent with the data 

(𝑃(𝑑|𝑓) > 0). Approximating this integral using sampling 

or some other standard method would involve identifying 

one or more functions 𝑓 for which 𝑃(𝑑|𝑓) > 0. Our 

participants, however, rarely identified even a single 

function 𝑓 for which 𝑃(𝑑|𝑓) > 0. Recall that participants 

who claimed that the Numerologists occupied an island 

were asked whether they had found any mathematical 

function to explain the observations. Participants reported 

finding a function on only 15.5% of these occasions. 

Furthermore, the “functions” that these participants reported 

were often not fully specified functions at all. One 

representative participant claimed to have found a function 

but then wrote that “I don't have a function, but when put 

roughly on a graph it almost-kinda-sorta forms a wave.” 

Summarizing his inference, the same participant later added, 

“I'm grasping at straws though.” Figure 4, furthermore, 

shows that the relationship between function finding and the 

culture ratings is weak and, according to a linear regression, 

non-significant, R2 = .016, F(1, 12) = .19, p = .67.  

Could participants have estimated 𝑃(𝑑|Numerologists) 

without identifying a single specific function 𝑓 that might 

have been used by the Numerologists? Might participants, 

for example, have used some computational procedure that 

approximates the integral in Equation 3 without actually 

identifying any specific functions? We cannot exclude this 

possibility, but we do not know of any such procedure. In 

the absence of a known procedure that approximates the 

integral in Equation 3 given some plausible specification of 

the prior, it seems reasonable to conclude that our 

participants did not rely on comparative hypothesis testing. 

 
Figure 4: The mean culture ratings as a function of the 

proportion of participants who claimed to have identified a 

mathematical function that explained the observations. 

 

As a final test of our model, we investigated whether the 

model-derived surprise predicted the culture ratings even 

after excluding trials in which participants claimed to have 

found a mathematical function. To do so, we recalculated 

the mean culture ratings while excluding any culture rating 

where either (1) the participant reported finding a 

mathematical function or (2) the participant never noticed 

the relevant feature (as in previous analyses). A linear 

regression on these recalculated culture ratings confirmed 

that the logit of the p-values remained strongly predictive of 

the culture ratings, R2 = .87, F(1, 10) = 69.43, p < .001.  

 

 
Figure 5: Culture ratings as a function of surprise condition 

and the number of burial sites. The error bars show standard 

errors. 

 

Our analyses so far have focused on the islands that were 

designed to be of “moderate” or “high” surprise. We 

compared these islands to the unsurprising “None” islands 

by analyzing the mean culture ratings as a function of 

surprise condition. Figure 5 shows that participants were 

much more willing to attribute island occupancy to the 

Numerologists in the high-surprise condition. The similarity 

between the culture ratings for the unsurprising and 

moderately-surprising condition was not expected, but it 

may be that the culture ratings are only influenced by 

observations once the surprise exceeds a certain threshold. 

Figure 5 also suggests that island size might have influenced 
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the culture ratings, either on its own or in an interaction with 

the surprise condition. A within-subjects ANOVA showed 

that the culture ratings were influenced by both surprise 

condition, F(2, 100) = 27.80, p < .001, and island size, F(1, 

50) = 6.89, p = .01; the interaction between surprise 

condition and island size was marginally significant, F(2, 

100) = 2.89, p  = .06. In post-hoc analyses, we confirmed 

that the culture ratings in the unsurprising and moderately-

surprising conditions were not significantly different, t(50) 

= .80, p = .43, and that the culture ratings in the high-

surprise condition were significantly different from those in 

the unsurprising, t(50) = 5.66, p < .001, and moderately-

surprising, t(50) = 6.74, p < .001, conditions. 

Discussion 

The experimental findings suggest that people perform 

hypothesis space checking using an intuitive version of non-

comparative hypothesis testing. The findings are not 

naturally  explained by comparative hypothesis testing. This 

is not to say that comparative hypothesis testing is never 

useful: recall that our experiment was deliberately designed 

so that comparative hypothesis testing would be of limited 

relevance, and comparative hypothesis testing undoubtedly 

plays an important role in other settings. Moreover, 

although comparative hypothesis testing cannot explain our 

main experimental findings, there are reasons to believe that 

it influenced our participants’ thinking to some extent. 

Participants were often reluctant to fully commit to the idea 

that the Numerologists occupied the island even after 

observing very surprising observations: even in the most 

surprising condition (p ≈ .0001), the mean culture rating was 

only 0.73. One interpretation of this finding is that people 

are often unwilling to fully reject a hypothesis space until a 

better explanation is discovered (see also Griffiths & 

Tenenbaum, 2007). 

Other researchers have proposed that people employ 

methods such as sampling to approximate Bayesian 

inference in situations where it is impossible for them to 

evaluate the entire hypothesis space (e.g., Sanborn, 

Griffiths, & Navarro, 2010). These methods, however, do 

not address the problem posed by Figure 1. Sampling from 

H may be useful if this hypothesis space is large, but this 

approach does not explain how a reasoner might decide that 

the true hypothesis lies outside H. Supporters of sampling 

might respond that the problem of hypothesis space 

checking never arises because the space of available 

hypotheses is always equivalent to U. This position, 

however, seems incompatible with the intuition that 

scientists and others are sometimes able to generate 

hypotheses and explanations that are genuinely new.  

The justifications for comparative and non-comparative 

testing remain controversial among statisticians and 

philosophers (e.g., Howson & Urbach, 1989/1996; Mayo, 

1996; see also Gigerenzer et al., 1990, Chapter 3), but both 

kinds of hypothesis testing seem necessary to account for 

the inferences that people make. Non-comparative 

hypothesis testing is especially notable for the role it plays 

in the discovery of new hypotheses. These discovery 

processes, while often mysterious and difficult to explain, 

are involved in many of the most interesting inferences that 

people make. Statistical model checking does not explain 

where new hypotheses come from, but it can explain why 

people initiate the search for new hypotheses. 
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