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Opinion
Glossary

Backpropagation: a gradient-descent based algorithm for estimating the

weights in a multilayer perceptron, in which each weight is adjusted based

on its contribution to the errors produced by the network.

Bottom-up/mechanism-first explanation: a form of explanation that starts by

identifying neural or psychological mechanisms believed to be responsible for

cognition, and then tries to explain behavior in those terms.

Emergentism: a scientific approach in which complex behavior is viewed as

emerging from the interaction of simple elements.

Gradient-descent learning: learning algorithms based on minimizing the error

of a system (or maximizing the likelihood of the observed data) by modifying

the parameters of the system based on the derivative of the error.

Hypothesis space: the set of hypotheses assumed by a learner, as made

explicit in Bayesian inference and potentially implicit in other learning

algorithms.

Inductive biases: factors that lead a learner to favor one hypothesis over

another that are independent of the observed data. When two hypotheses fit

the data equally well, inductive biases are the only basis for deciding between

them. In a Bayesian model, these inductive biases are expressed through the

prior distribution over hypotheses.

Inductive problem: a problem in which the observed data are not sufficient to

unambiguously identify the process that generated them. Inductive reasoning

requires going beyond the data to evaluate different hypotheses about the

generating process, while maintaining uncertainty.

Likelihood: the component of Bayes’ rule that reflects the probability of the

data given a hypothesis, p(djh). Intuitively, the likelihood expresses the extent

to which the hypothesis fits the data.

Posterior distribution: a probability distribution over hypotheses reflecting the

learner’s degree of belief in each hypothesis in light of the information

provided by the observed data. This is the outcome of applying Bayes’ rule,

p(hjd).

Prior distribution: a probability distribution over hypotheses reflecting the

learner’s degree of belief in each hypothesis before observing data, p(h). The

prior captures the inductive biases of the learner, because it is a factor that

contributes to the extent to which learners believe in hypotheses that is

independent of the observed data.

Top-down/function-first explanation: a form of explanation that starts by
Cognitive science aims to reverse-engineer the mind, and
many of the engineering challenges the mind faces
involve induction. The probabilistic approach to modeling
cognition begins by identifying ideal solutions to these
inductive problems. Mental processes are then modeled
using algorithms for approximating these solutions, and
neural processes are viewed as mechanisms for imple-
menting these algorithms, with the result being a top-
down analysis of cognition starting with the function of
cognitive processes. Typical connectionist models, by
contrast, follow a bottom-up approach, beginning with
a characterization of neural mechanisms and exploring
what macro-level functional phenomena might emerge.
We argue that the top-down approach yields greater
flexibility for exploring the representations and inductive
biases that underlie human cognition.

Strategies for studying the mind
Most approaches to modeling human cognition agree that
the mind can be studied on multiple levels. David Marr [1]
defined three such levels: a ‘computational’ level charac-
terizing the problem faced by the mind and how it can be
solved in functional terms; an ‘algorithmic’ level describing
the processes that the mind executes to produce this
solution; and a ‘hardware’ level specifying how those pro-
cesses are instantiated in the brain. Cognitive scientists
disagree over whether explanations at all levels are useful,
and on the order in which levels should be explored. Many
connectionists advocate a bottom-up or ‘mechanism-first’
strategy (see Glossary), starting by exploring the problems
that neural processes can solve. This often goes with a
philosophy of ‘emergentism’ or ‘eliminativism’: higher-
level explanations do not have independent validity but
are at best approximations to the mechanistic truth; they
describe emergent phenomena produced by lower-level
mechanisms. By contrast, probabilistic models of cognition
pursue a top-down or ‘function-first’ strategy, beginning
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with abstract principles that allow agents to solve pro-
blems posed by the world – the functions that minds per-
form – and then attempting to reduce these principles to
psychological and neural processes. Understanding the
lower levels does not eliminate the need for higher-level
models, because the lower levels implement the functions
specified at higher levels.
considering the function that a particular aspect of cognition serves, explaining

behavior in terms of performing that function.
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Explanations at a functional level have a long history in
cognitive science. Virtually all attempts to engineer
human-like artificial intelligence, from the Logic Theory
Machine [2] to the most successful contemporary para-
digms [3], have started with computational principles
rather than hardware mechanisms. The great potential
of probabilistic models of cognition comes from the
solutions they identify to inductive problems, which play
a central role in cognitive science: Most of cognition, in-
cluding acquiring a language, a concept, or a causal model,
requires uncertain conjecture from partial or noisy infor-
mation. A probabilistic framework lets us address key
questions about these phenomena. How much information
is needed? What representations subserve the inferences
people make? What constraints on learning are necessary?
These are computational-level questions and they aremost
naturally answered by computational-level theories.

Taking a top-down approach leads probabilistic models
of cognition to explore a broad range of different assump-
tions about how people might solve inductive problems,
and what representations might be involved. Representa-
tions and inductive biases are selected by considering what
is needed to account for the functions the brain performs,
assuming only that those functions of perception, learning,
reasoning, and decision can be described as forms of prob-
abilistic inference (Figure 1). By contrast, connectionism
makes strong pre-commitments about the nature of
people’s representations and inductive biases based on a
certain view of neural mechanisms and development:
representations are graded, continuous vector spaces, lack-
ing explicit structure, and are shaped almost exclusively by
experience through gradual error-driven learning algor-
ithms. This approach rejects a long tradition of research
into knowledge representation in cognitive science,
discarding notions such as rules, grammars, and logic that
[(Figure_1)TD$FIG]

Figure 1. Theoretical commitments of connectionism and probabilistic models of

cognition. Based on a certain view of brain architecture and function, connectionist

models makes strong assumptions about the representations and inductive biases

to be used in explaining human cognition: representations lack explicit structure

and inductive biases are very weak. By contrast, probabilistic models explore a

larger space of possibilities, including representations of diverse forms and

degrees of structure, and inductive biases of greatly varying shapes and strength.

These possibilities include highly structured representations and inductive

constraints that have proven valuable – and arguably necessary – for explaining

many of the functions of human cognition.
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have proven useful in accounting for the functions of
higher-level cognition.

The rest of this article presents our argument for the
top-down approach, focusing on the importance of repres-
entational diversity. The next section describes how struc-
tured representations of different forms can be combined
with statistical learning and inference in probabilistic
models of cognition, using a case study in semantic cogni-
tion that has also been the focus of recent work in the
connectionist tradition [4]. We then give a broader survey,
across different domains and tasks, of how probabilistic
models have exploited a range of representations and
inductive biases to explain different aspects of cognition
that pose a challenge to accounts restricted to the limited
forms of representations and weaker inductive biases
assumed by connectionism. We emphasize breadth over
depth of coverage because our goal is to illustrate the
greater explanatory scope of probabilistic models. We then
discuss how probabilistic models of cognition should be
interpreted in terms of lower levels of analysis, a common
point of confusion in critiques of this approach, and close
with several other considerations in choosing whether to
pursue a top-down, ‘function-first’ or bottom-up, ‘mechan-
ism-first’ approach to cognitive modeling.

Knowledge representation and probabilistic models
A probabilistic model starts with a formal characterization
of an inductive problem, specifying the hypotheses under
consideration, the relation between these hypotheses and
observable data, and the prior probability of each hypoth-
esis (Box 1). Probabilistic models therefore provide a trans-
parent account of the assumptions that allow a problem to
be solved and make it easy to explore the consequences of
different assumptions. Hypotheses can take any form, from
weights in a neural network [5,6] to structured symbolic
representations, as long as they specify a probability distri-
bution over observable data. Likewise, different inductive
biases can be captured by assuming different prior distri-
butions over hypotheses. The approach makes no a priori
commitment to any class of representations or inductive
biases, but provides a framework for evaluating different
proposals.
Box 1. Probabilistic inference

Probability theory provides a solution to the problem of induction,

indicating how a learner should revise her degrees of belief in a set

of hypotheses in light of the information provided by observed data.

This solution is encapsulated in Bayes’ rule: if a learner considers a

set of hypotheses H that might explain observed data d, and assigns

each hypothesis h2H a probability p(h) before observing d (known

as the ‘prior’ probability), then Bayes’ rule indicates that the

probability p(hjd) assigned to h after seeing d (known as the

‘posterior’ probability) should be

pðhjdÞ ¼ pðdjhÞpðhÞ
P

h2H pðdjhÞpðhÞ (1)

where p(djh) is the ‘likelihood’, indicating the probability of observ-

ing d if h were true, and the sum in the denominator simply ensures

that the posterior probabilities sum to one. Bayes’ rule thus indicates

that the conclusions reached by the learner will be determined by

how well hypotheses cohere with prior knowledge, and how well

they explain the data.



Opinion Trends in Cognitive Sciences Vol.14 No.8
Figure 2 illustrates one way in which a probabilistic
approach can illuminate the nature of mental representa-
tions. Consider a property induction problem where
participants learn that horses, cows, and dolphins have
a certain property then must decide whether all mammals
are likely to have this property. Some researchers have
proposed that inferences about novel properties of animals
are supported by tree-structured representations [7], but
others suggest that the underlying mental representations
are closer to continuous spaces [8]. One way to resolve this
debate is to define a probabilistic framework that can use
either type of representation, and to see which representa-
tion best explains human inferences [9]. The results in
Figure 2a suggest that a tree structure is the better of these
two alternatives.

Connectionist models typically focus on a single form of
knowledge – whatever can be encoded in distributed codes
over layers of hidden units. Unlike the connectionist
approach, the probabilistic approach is open to the idea
that qualitatively different representations are used for
[(Figure_2)TD$FIG]

Figure 2. Qualitatively different representations are needed to account for inductive in

human responses for a property induction task where participants learn that several

property. Each point in each scatterplot corresponds to a trio of mammals, and the ver

property after learning that the animals in this trio have the property. The horizontal axis

a tree tend to have similar properties, or that nearby animals in a two dimensional spac

and the spatial model relies on the two-dimensional space shown. (b) Results for a task

spatial model now performs better than the tree model. (c) Relations between biolog

dimensional space, but a probabilistic model can discover that a tree best accounts for
different types of inferences. Figure 2b shows results from
a property induction experiment where the items are cities
and participants are told, for example, that a certain type
of Native American artifact is found near Houston, Dur-
ham, and Orlando, and then asked whether this artifact is
likely to be found near all major American cities. The
probabilistic framework that was previously applied to
the animal data (Figure 2a) now suggests that inferences
about spatial relations between cities are better captured
by a low-dimensional space than a tree. The same prob-
abilistic framework also suggests how people might learn
qualitatively different representations for different
domains [9] (Figure 2c).

Rogers and McClelland have argued that connectionist
models can implicitly capture representations like hier-
archically-structured taxonomies, but some types of infer-
ences seem to rely on explicit representations. For
example, explicit representations provide a natural way
to incorporate high-level semantic information provided by
natural language and informed by social reasoning. To a
ferences about different domains (adapted from [13]). (a) Model predictions and

animals have a property, then decide whether all animals are likely to have this

tical axis indicates how strongly humans believe that all mammals have a certain

shows the predictions of probabilistic models which assume that nearby animals in

e tend to have similar properties. The tree model relies on the tree structure shown

where participants make inferences about US cities rather than animal species. The

ical species could be represented using a tree, a ring, a set of clusters, or a low-

the observable features of these species.
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child who believes that dolphins are fish, hearing a simple
message from a knowledgeable adult (‘dolphins might look
like fish but are actually mammals’) might drastically
modify the inferences she makes. A learner equipped with
a hierarchically structured system of categories can
rearrange the hierarchy on hearing such an utterance.
By contrast, a connectionist model cannot easily reconfi-
gure itself through linguistic input. More generally,
whereas both types of approaches might learn well from
observing the world, only structured probabilistic
approaches offer a natural route to acquiring knowledge
through instruction or other forms of social communi-
cation.

Although we have focused so far on simple representa-
tions such as trees and low-dimensional spaces, many
other types of representations are possible and useful.
Probabilistic models defined over causal graphs, phrase
structure grammars, logical rules or theories have been
proposed for language, vision, and many other areas of
cognition (see Figure 3, and the following section). These
models inherit classic advantages of structured repres-
entations that connectionist models give up [10,11]: they
[(Figure_3)TD$FIG]

Figure 3. Structured statistical models provide a way to describe multiple levels of abst

to be able to discover how sounds are organized into words, how words are organized in

of these levels can be described in terms of probabilistic inference over a structured hy

used to describe the set of objects in a scene and the surfaces that comprise those ob
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generate infinite hypothesis spaces by combinatorial oper-
ations on basic elements and capture core properties of
human symbolic thought, such as compositionality and
recursion. Connectionists have criticized symbolic models
for failing to handle exceptions or produce graded gener-
alizations, or to account for how representations are
learned [4]. Combining structured representations with
probabilistic inference meets those challenges, and also
explain the rich and sophisticated uses of knowledge in
human cognition that appear to require symbolic forms of
representation.

The advantages of representational pluralism
With their ability to operate over a broad range of candi-
date representations and inductive biases, probabilistic
models provide a unifying framework for explaining the
inferences that people make in different settings. Here we
briefly summarize how probabilistic approaches have
addressed several aspects of human inductive reasoning
and learning that have not previously been well explained
in computational terms, and in particular, that would be
difficult to explain in a connectionist framework.
raction in a way that applies across different domains. In language, a learner needs

to sentences, and how a language is characterized by a grammar. Learning at each

pothesis space [36]. Analogous problems apply in vision, where grammars can be

jects (figure adapted from [38]).
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Rapid and flexible generalization

Human learners routinely draw successful generaliz-
ations from very limited evidence. Even young children
can infer the extensions of new words or concepts, the
hidden properties of objects, or the existence of causal
relations from a handful of relevant observations. These
abilities outstrip those of conventional machine learning
algorithms, but probabilistic models have shown how rapid
word learning [12], property induction [13], and causal
learning [14] can be explained as Bayesian inferences.
Probabilistic models have explained why people might
appear to generalize differently in different contexts as a
consequenceofapplying the samerulesof optimal statistical
inference over different priors [15] orknowledge representa-
tions [13] (Figure 2), and why some phenomena, such as
Shepard’s universal exponential law [16], might arise in an
entirely representation-independent way [17]. Algorithmic-
levelmodels of generalization oftenposit different processes
– rules to account for all-or-none generalizations, exemplar
similarity to account for more graded generalizations – but
probabilistic computational theories [18,19] have explained
why we have these particular processes, why they work as
theydo, andwhypeopleuse a rule-likeprocess in some cases
and a similarity process in others.

Probabilisticmodels have alsomade successful empirical
predictions about novel factors that can influence children’s
generalizations, such as the sampling processes generating
the data learners observe. Preschoolers andeven infants are
sensitive to whether objects exemplifying a new word or
hidden property are drawn specifically from the set of
positive examples (‘strong sampling’), or instead from some
more general or accidental process (‘weak sampling’), and
generalize more sharply in the former case [20,21]. Prob-
abilistic models naturally explain these findings, giving
sampling processes a central role in the statistical problem
of generalization through the likelihood term of Bayes’ rule
[12,19]. By contrast, informative sampling was not con-
sidered in previous algorithmic models and is not easily
accommodated within standard connectionist models of
statistical learning.

Causal learning

Discovering the causal relations between objects and
events in the environment is a basic problem of human
learning. Computational-level analyses of causal learning
have provided two types of insights. First, they introduce
the distinction between structure and strength [22]. When
scientists explore causal relations, they distinguish be-
tween questions of whether a relation exists (determining
causal structure), and how strong that relation is. This
distinction is blurred in associative accounts of causal
learning, but is explicit when causal learning is framed
as Bayesian inference over causal graphical models
[23,24]. Probabilistic models based on this approach have
given compelling quantitative accounts of human causal
judgments [22,25–27]. Second, probabilistic inference pro-
vides a way to understand how prior knowledge is com-
bined with statistical evidence in causal learning,
characterizing the different types of constraints that prior
knowledge can impose [14] and explaining how these con-
straints themselves could be learned [28,29].
Learning language

Children appear to be able to learn what utterances are,
and are not, allowed in their native language, to some
approximation, from exposure only to positive examples
of the language. Learning merely from positive instances
of a category has often been viewed as fundamentally
problematic, sometimes leading to strong nativist con-
clusions. The probabilistic approach provides powerful
tools, both theoretical [30] and computational [31], for
exploring how much learning is possible with minimal
language-specific innate biases. More broadly, because
linguistic representations can be highly structured, prob-
abilistic models provide the means to analyze what can be
learned given what sort of input, and can even be used to
evaluate what sorts of structures (e.g. what type of
grammar or phrase structure representation) provide
the best model of the data. Because all probabilistic
models are couched in the common language of prob-
ability theory, they also provide a natural way to combine
different sources of data (e.g. social cues and co-occur-
rence relations when learning the meaning of words [32]).
Probabilistic models have already been applied to many
problems in language development, from the acquisition
of syntax [31,33,34] to word segmentation [35] to learning
meanings in communicative contexts [32]. On the engin-
eering side of natural language processing, where the
same ability to learn with hierarchical, compositional or
recursive representations of meaning is crucial, struc-
tured statistical models have come to dominate and
reshaped the state of the art [36].

Visual perception

Probabilistic models have also revolutionized compu-
tational theories of visual perception. Models for low-level
vision such as motion estimation or shape perception
operate over high-dimensional continuous representa-
tions: vector fields representing motion components or
depth gradients [37]. Models for higher-level visual
tasks often resemble probabilistic parsing in natural
language: they operate over hierarchically structured
representations of objects and parts, assumed to be gener-
ated by a probabilistic grammar for natural scenes [38,39]
(Figure 3).

Learning to learn

Children learn their first words slowly, but in building
their initial vocabulary they also quickly acquire the ability
to learn new words much more rapidly [40]. Hierarchical
Bayesian models have been used to explain how humans
‘learn to learn’ words [41], as well as categories [42] and
causal relations [28,43], by performing inference on
multiple levels of abstraction. Connectionist models have
explored similar phenomena [44] but have not explained
how children can learn to learn so quickly, constructing
abstract knowledge of the appropriate form from relatively
little experience in a domain [9,43].

The psychological and neural interpretation of
probabilistic models
Probabilistic models explain human learning and induc-
tive reasoning in terms of Bayesian inference, and specify
361



Box 3. Probabilistic models and neural computation

Probabilistic models of cognition rarely emphasize inspiration from

neuroscience, or appeal to neural plausibility. Increasingly, how-

ever, the link between probabilistic inference and neural function is

drawing the attention of modelers from diverse backgrounds.

One route for linking Bayesian cognitive models to the brain uses

connectionism as a mediating paradigm: many familiar connec-

tionist algorithms for learning and inference have natural Bayesian

interpretations [5,6,52], and to the extent that these algorithms are

neurally plausible, they suggest how certain types of probabilistic

inferences could be implemented in the brain. Several connectionist

researchers have emphasized explicitly probabilistic formulations

for learning and inference, while still attempting to preserve the

distinctive ‘connectionist style’ of distributed representations ar-

ranged in hierarchical layers [53].

Another group of researchers aim to show how core computa-

tions and models from Bayesian statistics and machine learning –

many of which are also central in probabilistic models of cognition –

can be implemented in neurally plausible mechanisms. For

instance, Pouget, Beck, Ma and colleagues have studied how to

implement Bayesian parameter estimation and decision-making

using probabilistic population codes in networks of spiking neurons

[54]. Lee and Mumford [55] suggested that cortical hierarchies could

implement a form of particle filtering, which is also a candidate for

making algorithmic-level models (see main text).

Although research on the ‘Bayesian brain’ holds great promise,

there is presently a gulf between such a research program and the

Bayesian models of higher-level cognition reviewed in this article.

We have argued that probabilistic inference over structured

representations is crucial for explaining the use and origins of

human concepts, language, or intuitive theories. Yet little is known

concerning how these structured representations can be implemen-

ted in neural systems (however, see the research program of

Smolensky and colleagues [56]). In our view, the single biggest

challenge for theoretical neuroscience is not to understand how the

brain implements probabilistic inference, but how it represents the

structured knowledge over which such inference is defined.

Box 2. Connecting to process models

The discussion in the main text shows how connections between

the computational, algorithmic, and hardware levels might not be

transparent. However, exploring these connections is an important

part of the strategy of working through levels of analysis from the

top down. One way to do so is to consider psychological processes

that could approximate the computations required for probabilistic

inference. Applications of statistical models in machine learning and

artificial intelligence rely on such approximation algorithms,

because computing exact probabilities is typically intractable for

complex, real-world problems. These algorithms provide rational

approximations to probabilistic inference, and thus are a potential

source of ‘rational process models’ [45].

One class of approximation algorithms is Monte Carlo methods,

in which a probability distribution is approximated with a set of

samples from that distribution. One sophisticated Monte Carlo

method, importance sampling, can be implemented using the same

computations as the exemplar models used as process models of

categorization [46,47], requiring people to store a few hypotheses in

memory and activate them based on their similarity to observed

data [45]. A related set of algorithms known as ‘particle filters’

provide a way to approximately update a probability distribution as

data are observed. They have been used to model deviations from

ideal performance in category learning [48], associative learning

[49], detecting changes in temporal sequences [50], and sentence

processing [51], and could provide a way to connect all the way to

the neural level (Box 3).
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hypothesis spaces that often have symbolic structure.
Critics of probabilistic models often argue that they are
implausible as accounts of human cognition, pointing to
the computational difficulty involved in calculating Baye-
sian inference as well as the requirement of specifying the
hypothesis space in advance (see, e.g. the commentaries to
[19]). However, all models – including connectionist models
– build in hypothesis spaces; probabilistic models simply
make the space explicit. Moreover, this criticism presup-
poses that a computational-level analysis in terms of
Bayesian inference requires the algorithmic- or hard-
ware-level analysis to take the same form. This assump-
tion is false: using probabilistic models to provide a
computational-level explanation does not require that hy-
pothesis spaces or probability distributions be explicitly
represented by the underlying psychological or neural
processes, or that people learn and reason by explicitly
using Bayes’ rule.

To illustrate how the computational-level specification
of a model can differ significantly from its realization at
the algorithmic and hardware levels, it is useful to apply
this approach to one of the best-known connectionist
models, the multilayer perceptron. A multilayer percep-
tron can be characterized at the computational level as a
nonlinear function approximator. Its weights parameter-
ize an infinite, high-dimensional hypothesis space of non-
linear functions mapping input vectors to outputs.
Learning involves searching this hypothesis space for a
function that minimizes error on a training dataset. This
can actually be cast in Bayesian terms: the error corre-
sponds to the negative log likelihood of a hypothesis and
the prior is either uniform or prefers smaller weights
[5,6].

Described as Bayesian inference in an infinite, high-
dimensional hypothesis space, learning the weights of a
multilayer perceptron might sound implausible as a cog-
nitive process. However, considering ways to solve this
computational problem approximately but tractably
suggests more plausible psychological and even neural
interpretations. We can find at least a local maximum of
the Bayesian posterior by computing its gradient in weight
space and adjusting the weights iteratively along this
gradient. Familiar gradient-descent learning algorithms
such as backpropagation implement this strategy in a
parallel network of neuron-like units, each computing only
local functions of the activation and error signals of neigh-
boring units. This algorithm does not require explicit
enumeration or scoring of the full space of hypotheses,
nor even any explicit application of Bayes’ rule.

Similarly, we view the structured representations and
Bayesian calculations used in probabilistic models of cog-
nition as computational abstractions that could be imple-
mented in the mind and brain in a variety of implicit and
approximate ways. Such implementation could differ
across problems, and need not look like explicit structured
representations or Bayesian inference.Work on connecting
probabilistic models to psychological process models
(Box 2) and neural computation (Box 3) illustrates this
point, and indicates a possible route towards synthesis
with more bottom-up, mechanistically constrained
approaches to modeling the mind (Box 4).
362
Conclusion: start at the top, or at the bottom?
Top-down and bottom-up approaches to traversing levels of
analysis are analogous to building a single bridge from
different ends. Nonetheless, we expect that more rapid



Box 5. Response to McClelland et al.

We enjoyed reading McClelland et al.’s article, and hope that this

comparison of probabilistic and connectionist models will continue

to result in productive interactions. In this spirit, we first clarify

several respects in which our position differs from its characteriza-

tion in their article. Rather than treating people as optimal cognizing

machines, we believe that considering optimal solutions to the

computational problems people face can provide insight into

human behavior. People undoubtedly approximate these optimal

solutions in a variety of ways. We do not ignore mechanism and

implementation, but view computational level analyses as a guide

to understanding the function that those mechanisms and imple-

mentations fulfill. We do not see the fact that different mechanisms

are involved when task demands differ as being inconsistent with

this approach. Finally, we do not make an a priori commitment to

particular types of representations. Probabilistic models are a tool

for exploring different sets of assumptions about representations

and inductive biases, making it possible for data to lead us to an

account of human cognition.

McClelland et al. warn of the dangers of mis-specifying the

computational problems that people are solving, and point to

Chomskyan linguistics as an illustration. It is certainly true that any

specific high-level explanation, whether probabilistic or not, can be

questioned. However, McClelland et al. go much further than this,

arguing that most if not all aspects of cognition should be explained

without the ‘often misleading’ constructs of high-level explanation.

This radical position opposes not just the probabilistic approach,

but standard practice across the cognitive sciences. By contrast, we

believe that greater danger lies in committing to particular incorrect

low-level mechanisms – a real possibility because most connec-

tionist networks are vastly oversimplified when compared with

actual neurons. Connectionist networks are opaque, and it is

typically difficult to understand what shapes their behavior and

what constraints they might be implementing. This makes it hard to

understand the consequences of changing the underlying mechan-

isms. By contrast, the transparency of probabilistic models makes it

easier to understand the consequences of changing our assump-

tions, and thus to recover from errors of mis-specification.

Chomskyan linguistics is an interesting choice as an illustration of

the dangers of the probabilistic approach. Whereas many of the

ideas introduced by Chomsky have subsequently been revised or

rejected, the notion of a generative grammar, once paired with the

statistical principles that underlie probabilistic models, has been the

basis for considerable advances in both computational linguistics

and psycholinguistics (e.g. [33,34,36,51]). This marriage of structure

and statistics is also at the heart of almost all modern machine

learning algorithms, having become the method of choice for

solving the types of real-world learning problems that people face

every day. Although cognitive modeling and machine learning are

two different enterprises, a basic challenge for both is to match

human-level performance in domains such as language, vision, and

reasoning. Of the modeling approaches that psychologists have

considered, the structured statistical approach comes closest to

meeting this challenge.

Box 4. Outstanding questions

� What are the connections between probabilistic models at the

computational level, and the psychological and neural processes

involved in cognition?

� How (and to what extent) might human behavior be understood

as an approximation to the ‘ideal observer’ behavior predicted by

the probabilistic approach? To what extent can approximations

built into probabilistic models implementing human-like cognitive

limitations account for divergences between human and model

performance?

� How might probabilistic inference and structured representations

be implemented in neural hardware?

� What questions about human cognition are more naturally

framed at levels lower than the computational level? Are there

any phenomena for which no computation-level explanation is

possible?
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progress will come from attempts to reduce abstract prob-
abilistic analyses of cognition to psychological and neural
mechanisms, rather than studies of how analogous com-
putational functions might emerge from connectionist
networks (Box 5). The flexibility to explore different
assumptions about representation and inductive biases,
and to naturally capture inferences over rich and struc-
tured forms of knowledge, are central advantages of the
top-down approach. However, there are two other import-
ant differences between these approaches.

First, the top-down strategy fits particularly well with
understanding solutions to the computational problems
that the mind faces. Finding engineering solutions to these
problems is the type of process that typically operates top-
down, from high-level specification to physical imple-
mentation. A probabilistic approach to reverse-engineer-
ing themind forges strong connectionswith the latest ideas
from computer science, machine learning, and statistics.
Bottom-up accounts can be harder to interpret: we might
simulate a complex system and find that its emergent
behavior solves a cognitive problem, but that does not
mean we will necessarily know how or why it solves it
successfully.

Second, bottom-up accounts could be highly sensitive to
details of the underlying mechanisms, and these details
are either unknown or abstracted away in most current
models. For instance, small differences in how neurons
process information, adjust their weights, or connect with
other neurons could lead to very different emergent beha-
vior in a large neural network. These possibilities are
particularly problematic given the rapidly evolving state
of neuroscience research and the increasingly unclear
relation between connectionist networks and biological
neural circuits. Committing to a set of assumptions about
the representations and inductive biases involved in
human cognition thus seems premature.

Whereas the phenomena of human cognition must ulti-
mately be analyzed at all of Marr’s levels, we are far from
understanding how rich knowledge structures can be
implemented in neural circuits. Whether such imple-
mentations will ultimately resemble conventional connec-
tionist models is an open question. However, when a
neural-level understanding of human knowledge and its
origins is eventually achieved, we predict that it will build
on a deep understanding of these questions at the compu-
tational level – and that this understanding will be best
framed using the concepts and principles of probabilistic
inference.

References
1 Marr, D. (1982) Vision, W.H. Freeman
2 Newell, A. and Simon, H. (1956) The logic theory machine: a complex

information processing system. IRE Trans. Information Theory IT-2,
61–79

3 Russell, S.J. and Norvig, P. (2002) Artificial Intelligence: a Modern
Approach, (2nd edn), Prentice Hall

4 Rogers, T. and McClelland, J. (2004) Semantic Cognition: a Parallel
Distributed Processing Approach, MIT Press

5 Neal, R.M. (1996)Bayesian Learning for Neural Networks (Number 118
in Lecture Notes in Statistics), Springer-Verlag
363



Opinion Trends in Cognitive Sciences Vol.14 No.8
6 MacKay, D.J.C. (1995) Probable networks and plausible predictions – a
review of practical Bayesian methods for supervised neural networks.
Network: Comput. Neural. Systems 6, 469–505

7 Atran, S. (1998) Folk biology and the anthropology of science: cognitive
universals and cultural particulars. Behav. Brain Sci. 21, 547–609

8 Rips, L.J. (1975) Inductive judgments about natural categories. J.
Verbal Learning Verbal Behav. 14, 665–681

9 Kemp, C. and Tenenbaum, J.B. (2008) The discovery of structural form.
Proc. Natl. Acad. Sci. U. S. A. 105, 10687–10692

10 Fodor, J.A. and Pylyshyn, Z.W. (1988) Connectionism and cognitive
architecture: a critical analysis. Cognition 28, 3–71

11 Marcus, G.F. (2001) The Algebraic Mind: Integrating Connectionism
and Cognitive Science, MIT Press

12 Xu, F. and Tenenbaum, J.B. (2007) Word learning as Bayesian
inference. Psychol. Rev. 114, 245–272

13 Kemp, C. and Tenenbaum, J.B. (2009) Structured statistical models of
inductive reasoning. Psychol. Rev. 116, 20–58

14 Griffiths, T.L. and Tenenbaum, J.B. (2009) Theory-based causal
induction. Psychol. Rev. 116, 661–716

15 Griffiths, T.L. and Tenenbaum, J.B. (2006) Optimal predictions in
everyday cognition. Psychol. Sci. 17, 767–773

16 Shepard, R.N. (1987) Towards a universal law of generalization for
psychological science. Science 237, 1317–1323

17 Chater, N. and Vitanyi, P.M.B. (2001) The generalized universal law of
generalization. J. Math. Psychol. 47, 346–369

18 Tenenbaum, J.B. (2000) Rules and similarity in concept learning. In
Advances in Neural Information Processing Systems (Vol. 12) (Solla,
S.A., ed.), In pp. 59–65, MIT Press

19 Tenenbaum, J.B. and Griffiths, T.L. (2001) Generalization, similarity,
and Bayesian inference. Behav. Brain Sci. 24, 629–641

20 Xu, F. and Tenenbaum, J.B. (2007) Sensitivity to sampling in Bayesian
word learning. Dev. Sci. 10, 288–297

21 Gweon, H. et al. (2010) Infants consider both the sample and the
sampling process in inductive generalization. Proc. Natl. Acad. Sci.
U. S. A. 107, 9066–9071

22 Griffiths, T.L. and Tenenbaum, J.B. (2005) Structure and strength in
causal induction. Cogn. Psychol. 51, 354–384

23 Spirtes, P. et al. (1993) Causation Prediction and Search, Springer-
Verlag

24 Pearl, J. (2000) Causality: Models, Reasoning and Inference,
Cambridge University Press

25 Gopnik, A. et al. (2004) A theory of causal learning in children: causal
maps and Bayes nets. Psychol. Rev. 111, 1–31

26 Cheng, P. (1997) From covariation to causation: a causal power theory.
Psychol. Rev. 104, 367–405

27 Lu, H. et al. (2008) Bayesian generic priors for causal learning. Psychol.
Rev. 115, 955–984

28 Kemp, C. et al. (2007) Learning causal schemata. In Proceedings of the
Twenty-Ninth Annual Conference of the Cognitive Science Society
(McNamara, D.S. and Trafton, J.G., eds), pp. 389–394, Cognitive
Science Society

29 Lucas, C.G. and Griffiths, T.L. (2010) Learning the form of causal
relationships using hierarchical Bayesian models. Cogn. Sci. 34, 113–

147
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