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Humans can learn to organize many kinds of domains into categories, including real-world domains such
as kinsfolk and synthetic domains such as sets of geometric figures that vary along several dimensions.
Psychologists have studied many individual domains in detail, but there have been few attempts to
characterize or explore the full space of possibilities. This article provides a formal characterization that
takes objects, features, and relations as primitives and specifies conceptual domains by combining these
primitives in different ways. Explaining how humans are able to learn concepts within all of these
domains is a challenge for computational models, but I argue that this challenge can be met by models
that rely on a compositional representation language such as predicate logic. The article presents such a
model and demonstrates that it accounts well for human concept learning across 11 different domains.
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Humans think about a wide range of concepts, including some
which correspond to single words (e.g., bicycle, brown, and
brother) and some which do not (e.g., brown bicycles owned by
my brother). Concepts can be viewed in a variety of ways, but one
common approach treats a concept as a function that picks out a
category, or a subset of the items in a given domain. For example,
the domain of artifacts includes many different items, and the
concept of “bicycle” picks out a category that includes a subset of
the items in the domain. Psychologists have studied a number of
real-world domains, including artifacts, colors, and kinsfolk, and
have also worked with simple synthetic domains in an attempt to
understand the basic principles that govern the acquisition and use
of concepts. Table 1 shows some of these domains, but includes
only a tiny fraction of the conceptual universe, or the full space of
possibilities.

The notion of the conceptual universe motivates the three goals
of the present article. The first goal is to provide a systematic
account of the domains that belong to the conceptual universe and
to characterize the qualitatively different categories that exist

within these domains. The second goal is to describe novel and
existing empirical studies that explore concept learning across
multiple domains in the conceptual universe. The third goal is to
develop and evaluate a computational approach to concept learn-
ing that can be applied across all of the domains in the conceptual
universe. I now expand on each goal in turn.

In order to understand how humans are able to think about all of
the domains in the conceptual universe, the first step is to charac-
terize the structure of the universe. A successful characterization
should allow researchers to understand the relationships between
different kinds of learning problems and to identify useful targets
for empirical studies. This article provides a characterization that
treats objects, features, and relations as basic conceptual elements,
and specifies conceptual domains by combining these elements in
different ways. For example, domains 1 and 2 in Table 1 differ
according to whether the features belonging to each item are
distributed across several objects (domain 2) or possessed by a
single object (domain 1; Shepard, Hovland, & Jenkins, 1961).
Domains 2 and 3 differ according to whether the features are
substitutive features that take two values (e.g., size is either big or
small in domain 2) or additive features that can be described as
present or absent (e.g., the slash in domain 3; Garner, 1978a; Gati
& Tversky, 1982). Domains 2–4 illustrate the role of composition,
because each item in these domains is constructed by combining
three objects. Additional examples of composition are provided by
domains 6–9, which include items such as molecules and kinship
systems that correspond to configurations of objects, features, and
relations. Previous researchers have characterized different kinds
of objects, features, and relations (Aitkin & Feldman, 2006; Cot-
trell, 1975; Crockett, 1982; Feldman, 2000; Garner, 1978a; Lee &
Navarro, 2002; Shepard et al., 1961; Tversky, 1977) and have
emphasized the idea that these elements can be compositionally
combined (Bourne, 1970; Goodman, Tenenbaum, Feldman, &
Griffiths, 2008). The characterization of the conceptual universe
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developed here builds on the insights of these researchers, and the
goal here is to systematize and extend previous efforts.

After characterizing the conceptual universe, the next step is to
study human learning across multiple domains. Studying multiple
domains is important because different domains expose different
aspects of conceptual structure. For example, domain 4 in Table 1
can be used to explore concepts that rely on quantification, includ-
ing the concept that picks out all items where two or more objects
have slashes. No corresponding concept can be formulated in
domain 2. Previous researchers have emphasized the importance of
studying multiple domains. For example, Shepard et al. (1961),
Goodwin (2006), and Mathy (2010) have compared learning pat-
terns across multiple domains, and Feldman (2000) has explored
two versions of domain 1 in Table 1 that include different numbers
of binary features. Here, I discuss empirical results for several
domains that have previously been studied, and present results for
several novel domains, including domains that highlight the role of
composition, quantification, and relations.

There are many computational accounts of concept learning that
make a variety of theoretical commitments. For example, one class

of models proposes that concepts correspond to mental rules
(Bourne, 1970; Bruner, Goodnow, & Austin, 1956; Feldman,
2006; Fific, Little, & Nosofsky, 2010; Goodman et al., 2008;
Lafond, Lacouture, & Cohen, 2009), and another proposes that
concepts are better described as patterns of weights within con-
nectionist networks (Kruschke, 1992; Love, Medin, & Gureckis,
2004). The first two contributions of this article should be relevant
to researchers from both camps. Characterizing the conceptual
universe and collecting empirical data help to chart the phenomena
that both groups of researchers should ultimately aim to explain.
The third goal of this article, however, is to develop a specific
modeling approach that can account for concept learning across
multiple domains. Computational theories of concept learning
often focus on a single domain, but characterizing the conceptual
universe motivates the development of theories that apply to all of
the domains in the universe.

The first challenge is to characterize the mental representations
that support concept learning. It may ultimately be possible to
develop connectionist models that account for learning across all
of the domains in the conceptual universe, but the path toward this

Table 1
Nine Domains That Belong to the Conceptual Universe

Item description

1. 1 object, 3 substitutive binary features

2. 3 objects, 3 substitutive binary features

3. 3 objects, 3 additive binary features

4. 3 objects, 1 additive binary feature

5. 1 object, 2 substitutive ternary features

6. 3 objects, 1 undirected binary relation

7. 6 objects, 1 directed binary relation

8. Multiple objects, multiple features and relations

4 objects, multiple features and relations9.

Domain
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Note. A domain is a set of items, and each item includes some number of objects and some number of features
and relations defined over these objects. For example, each item in domain 1 includes a single object that has
three features: size, shading, and stripe orientation. Each item in domain 8 is a molecule constructed by
combining atoms of carbon and hydrogen. Each item in domain 9 includes four siblings of a focal individual who
is not shown. The features and relations defined over these siblings include a sex feature and a relative age
relation that indicates whether each sibling is older or younger than the focal individual. The gray ovals indicate
different ways in which these siblings can be organized into categories.
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goal is far from clear. In contrast, I suggest that a rule-based
approach provides a natural account of learning across multiple
domains. Like previous rule-based models, the model developed
here assumes that humans are equipped with representational
elements that pick out objects, features, and relations, and can
combine these elements to construct representations of complex
concepts. Importantly, these basic conceptual elements can be
assembled in different ways to capture the structure of different
domains. To turn this general idea into a fully-specified computa-
tional model, it is necessary to characterize the compositional
language that is used to construct complex representations out of
simpler parts. Predicate logic is the most familiar language of this
kind, and has previously served as the representational foundation
for many psychological models, including accounts of knowledge
representation (Hayes, 1978; Hobbs & Moore, 1985), deductive
reasoning (Braine & O’Brien, 1998; Rips, 1994; Stenning & van
Lambalgen, 2008), and analogical inference (Gentner, 1983; Ho-
lyoak & Thagard, 1989). Here, I explore the extent to which
predicate logic can help to account for human learning across
multiple domains in the conceptual universe.

The hypothesis that concepts are represented in a compositional
language immediately provides a complexity ordering over the
resulting space of concepts, where the complexity of any concept
corresponds to the length of its minimal description in the repre-
sentation language (Chater, 1999; Chater & Vitanyi, 2003b; Fass
& Feldman, 2003; Feldman, 2000). Given the assumption that the
difficulty of learning a concept is predicted by its complexity, it
follows that any concrete proposal about the language of mental
representation will make predictions about the relative difficulty of
learning different concepts. Here, I propose that description length
in predicate logic can predict the difficulty of human learning
across multiple domains in the conceptual universe. Although
previous studies have not directly explored the relationship be-
tween conceptual complexity and description length in predicate
logic, there are previous accounts of conceptual complexity that
focus on propositional or Boolean logic. The literature on Boolean
concept learning is extensive (Nosofsky, Gluck, Palmeri, McKin-
ley, & Glauthier, 1994; Shepard et al., 1961), and Feldman (2000;
see also Neisser & Weene, 1962) has reported that the psycholog-
ical complexities of Boolean concepts are well predicted by their
description lengths in propositional logic. The present article
builds on Feldman’s work in two key respects. First, I focus on
concepts that rely on quantification and relations and therefore
probe aspects of mental representation that go beyond proposi-
tional logic. Second, I show how theories of mental representation
can be informed by comparing concept learning across qualita-
tively different domains.

The next section provides a formal characterization of the con-
ceptual universe and describes a method for identifying the differ-
ent types of concepts that exist within each domain. I then describe
a rule-based account of concept learning that relies on predicate
logic and use it to account for data collected across 11 qualitatively
different domains. The analyses consider data from two new
experiments along with data from experiments carried out by
several previous researchers (Aitkin & Feldman, 2006; Crockett,
1982; Feldman, 2000; Kemp, Goodman, & Tenenbaum, 2008a).
The results suggest that a rule-based approach that relies on
predicate logic as a representation language is capable of account-

ing for concept learning across a large part of the conceptual
universe.

The Conceptual Universe

Before discussing the experimental study of concept learning, it
is important to consider the range of settings within which concept
learning can occur. Humans can learn and think about many kinds
of concepts, and characterizing the full range of possibilities es-
tablishes the broader framework within which specific empirical
investigations should be situated. This article formalizes concepts
as functions that pick out a subset of the items in a domain, and
characterizing the space of possible concepts therefore requires a
characterization of the space of possible domains. Nine domains
are shown in Table 1, and the full set of domains is referred to as
the conceptual universe.

This section provides a characterization of the conceptual uni-
verse that is far from exhaustive, but that nevertheless provides a
useful foundation for experimental and computational work. Each
domain in the universe is a collection of items, and specifying a
space of possible items therefore provides a way to characterize
a broad family of domains. Each item is formalized here as a
semantic system of objects, features, and relations. Figure 1 shows
examples of four semantic systems and includes set-theoretic
specifications of each one. Figure 1a is a simple system S that
includes three objects and one binary feature. The type specifica-
tion takes the following form:

S � �O � �o1,o2,o3�, F : O3 �0, v1��.

The specification refers to a set O of three objects o1, o2, and o3

that correspond to the three gray squares in Figure 1a. The binary
feature F takes two values that can be described as 0 (absent) or v1

(slash present). For example, suppose that the system in Figure 1a
is a card issued by a dining hall where the three squares represent
three stations that serve appetizers, entrees, and desserts. When a
patron visits a station, a slash is added to the corresponding square
on her card.

Figure 1b shows a second example that includes a binary rela-
tion in addition to a binary feature. The system is a molecule of
methane and is constructed from five objects o1–o5 that correspond
to single atoms. The feature E indicates whether each atom is a
carbon atom or a hydrogen atom, and the relation Bond(x, y)
indicates whether objects x and y are joined by a single bond, a
double bond, or no bond.

Figure 1c shows a third example that corresponds to a simple
kinship system. The system shown includes a focal individual
labeled as Ego and four siblings of this individual: an elder brother
(Be), younger brother (By), elder sister (Ze), and younger sister
(Zy). The system includes a feature that indicates whether each
individual is male or female, and a relation Rel_Age that indicates
the relative ages of each pair of individuals. More extensive
kinship systems may include many additional relations, including
relations that pick out pairs (x, y) where x is the parent of y, and
pairs where x is the spouse of y.

Figures 1a–1c illustrate how objects, features, and relations can
be combined to construct semantic systems. These systems in turn
can be treated as “compound objects” over which features and
relations are defined to create higher-level semantic systems. Fig-
ure 1d shows a high-level system that includes eight systems s1–s8,
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each of which has the type specification shown in Figure 1a. The
higher-level system includes a feature C defined over these sys-
tems that picks out all systems with two or more slashes. For
example, suppose that patrons of the dining hall are eligible for a
free drink if they make purchases at two or more stations. Category
C includes all cards that qualify the bearer for a free drink. Similar
examples can be formulated within the chemical domain shown in
Figure 1b. Consider, for example, the category of “aromatic hy-
drocarbons,” which includes molecules that have a ring of carbon
atoms with alternating double and single bonds. This category can
be formalized using a feature that picks out all qualifying mole-
cules from the family shown in domain 9 of Table 1. The process
of defining higher-level features and relations can continue at
progressively higher levels. For example, chemical elements are
combined to form molecules, which are combined to form cells,
which are combined to form organisms, and scientists are able to
think about features and relations at all of these levels.

Although Figure 1 focuses on some of the simplest possible
cases where objects, features, and relations are combined to con-
struct semantic systems, the same kind of compositional structure
is characteristic of everyday thought. For example, collective
nouns such as “family” and “committee” refer to groups of objects
that are mentally bound together into systems (Bloom & Kelemen,
1995). Events can also be viewed as systems of objects and
relations. For example, an event where Mary gives a book to John
can be characterized as a semantic system that specifies a relation-
ship involving three objects: Mary, the book, and John (Davidson,

1967; Fillmore, 1968; Jackendoff, 1983; Levin & Rappaport
Hovav, 1995; Pustejovsky, 1991). Similarly a robbery event can be
viewed as a semantic system that specifies relationships between
objects that include the thief, the victim, and the goods that were
stolen (Gentner & Kurtz, 2005). Higher-level systems can be
formulated in turn by defining features or relations over events.
For example, the category of “armed robberies” can be formalized
as a higher-level system which includes a higher-level feature that
picks out all robbery events where a weapon was used to carry out
the crime. Similarly, higher-level relations can be used to organize
events into systems that correspond to stories (Rumelhart, 1975),
narratives, or scripts (Schank & Abelson, 1977). Examples of this
kind suggest that humans readily organize objects into semantic
systems, and find it natural to think about features and relations
defined over these systems. The need to account for this kind of
compositional structure is a key motivation for the model of
concept learning developed in later sections.

The set-theoretic specifications in Figure 1 were introduced
relatively informally, but the space of possible specifications can
be given a formal characterization. The basic idea is to characterize
the basic conceptual elements that appear in these specifications,
then to specify a compositional process that allows these elements
to be combined. Generating possible specifications in this way
characterizes a vast space of domains that can be used to explore
human concept learning. Table 2 shows a corner of this space that
is organized around a classic domain studied by Shepard et al.
(1961), where each item includes a single object with three binary

Figure 1. Semantic systems. (a) A system with three objects (gray squares) and a single binary feature (the
slash). (b) A molecule of methane can be viewed as a system that includes five objects (atoms), a feature that
characterizes the chemical identity of each atom, and a relation that indicates whether a single bond, a double
bond, or no chemical bond exists between each pair of atoms. (c) A kinship system that includes a focal individual
labeled as Ego and four siblings of this individual. The system includes a feature that specifies the sex of each
individual, and a relation that indicates the relative age of each pair of individuals. (d) A high-level semantic system
S defined over eight compound objects s1–s8, each of which is a semantic system in its own right. The system shown
includes a feature C that picks out a category that includes all items with two or more slashes.
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features. This classic domain appears in the first row of Table 2,
and the remaining domains in Table 2 show variants of the classic
domain that are created by combining objects, features, and rela-
tions in different ways. Characterizing and exploring these differ-
ent domains is important because we will see that different do-
mains in Table 2 can lead to different patterns of concept learning.

The domains in Table 2 include both additive and substitutive
features (Gati & Tversky, 1984; see also Garner, 1978a, 1978b, for
a similar distinction). Additive features such as the slash in domain
6 can be described as either absent or present. A slash is a
relatively abstract example of an additive feature, but everyday
examples of additive features include binary features that specify
whether a person wears glasses and has a moustache (Gati &
Tversky, 1984). The domain specifications in Table 2 represent
additive features as features that can take a value of 0 (absent).
Substitutive binary features such as the texture feature in domain
5 also take one of two values, but these two values are symmet-
ric—there is no sense in which one feature value (e.g., horizontal)
corresponds to the presence of the feature and the other (e.g.,
vertical) corresponds to the absence of the feature. Domains 7 and
8 in Table 2 show that relations can also be substitutive or additive.
To keep track of the different kinds of relations and features, I refer
to the eight domains using the labels in the second column of Table
2. For example, the first domain includes systems that are con-
structed using one object and three substitutive features, and is
therefore referred to as domain (1O,3SF). The second domain is

similar but based on additive rather than substitutive features, and
is therefore referred to as domain (1O,3AF).

Future researchers may find ways to improve on the set-
theoretic notation used here to characterize the conceptual uni-
verse. More important than the formal machinery, however, are the
foundational ideas that motivate the machinery. The approach
described in this section is founded on two key ideas: first, that
objects, features, and relations are the basic elements that can be
combined to construct descriptions of the world, and second, that
these conceptual elements can be bound together into compound
objects or systems. The same basic ideas lie at the heart of many
approaches to knowledge representation, and the contribution here
is to apply these familiar ideas in a way that supports the study of
human concept learning.

There are at least two reasons why characterizing the conceptual
universe may be productive. First, comparing learning phenomena
across closely-related domains can provide a powerful tool for
understanding how humans learn and represent concepts. For
example, Experiment 1 in this article compares learning times
across four of the domains in Table 2 in an attempt to explore how
quantification shapes concept learning. Similar approaches have
been productive in other areas of psychology—for example,
problem-solving researchers have found it useful to explore why
isomorphic problems can lead to very different patterns of behav-
ior (K. Kotovsky, Hayes, & Simon, 1985). Second, understanding
the scope of the universe can help to establish the most important

Table 2
Specifications for Eight Domains That Include Eight Items Each

Domain label Domain specification Domain # types

1. (1O, 3SF) 6

2. (1O, 3AF) 10

3. (3O, 3SF) 6

4. (3O, 3AF) 10

5. (3O, 1SF) 9

6. (3O, 1AF) 10

7. (3O, 3SR) 6

8. (3O,1AR) 10

where

where

where

where

where

where

where

where

, , ,,,,,

, , ,, , , ,

, , ,,,,,

, , ,,,,,

Note. Each item in the first two domains includes a single object (1O), and the items in all remaining domains
include three objects (3O) each. Each domain includes either substitutive features (SF), additive features (AF),
a substitutive relation (SR), or an additive relation (AR). The final column shows the number of four-item
category types that can be formulated within each domain. All domains can be viewed as variants of the domain
originally studied by Shepard et al. (1961). Many of these domains have been studied by previous researchers:
(1O,3SF) (Feldman, 2000; Mathy & Bradmetz, 2004; Nosofsky, Gluck, et al., 1994; Shepard et al., 1961; Vigo,
2009); (1O,3AF) (Mathy & Bradmetz, 2011; Sakamoto & Love, 2004); (3O,3SF) (Shepard et al., 1961);
(3O,1SF) (Shepard et al., 1961); (3O,1AF) (Goodwin, 2006; Mathy, 2010); and (3O,1AR) (Crockett, 1982).
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priorities for psychological research. Current studies often aim to
provide a detailed account of phenomena within a single domain,
but across-domain coverage is arguably just as important as
within-domain coverage, if not more so (Lee, 2011; Newell, 1989).
Previous accounts of conceptual complexity have focused on se-
lected domains from Table 1, but no existing account can explain
how humans learn concepts across all of these domains. The
formal approach described in later sections is motivated in large
part by the challenge of capturing learning across the entire con-
ceptual universe.

Concept Types

Now that the conceptual universe has been characterized, I turn
to the problem of characterizing the different types of concepts that
exist within each domain. Consistent with Figure 1d, a concept
will be formalized as a high-level feature that picks out a subset of
the items in a domain. The subset picked out in this way is called
the extension of a concept. Appendix A describes a general method
for identifying the number of qualitatively different extensions that
exist within any domain. This section describes the number of
four-item extensions that exist within the domains in Table 2.
Focusing on these domains will illustrate that domains which
appear similar on the surface may support different kinds of
concepts, and will help to motivate the experiments that follow.

All of the domains in Table 2 include exactly 8 items. As a

result, each domain allows �8
4� � 70 different ways to specify

a category extension that includes exactly four items. Some of
these extensions have the same basic structure. In domain
(1O,3SF), for example, the extension that includes only the four
small items and the extension that includes only the four gray
items are structurally similar, because both can be described using
a single feature value. Both extensions can therefore be treated as
instances of the same type. Based on considerations of this kind,
Shepard et al. (1961) pointed out that the 70 concepts of size four
in domain (1O,3SF) can be organized into six qualitatively differ-
ent types, and I refer to these types as SHJ types I–VI. A repre-
sentative of each type is shown in Figure 2b. The eight vertices of
the cube in Figure 2a represent the eight items in the domain, and
the labels of these vertices were created by converting the three
features to Boolean values. The shaded nodes in Figure 2b show
items that belong to the extension of a concept. For example, the
representative of type I includes all nodes where the second feature
has value 1, and corresponds to the extension that includes the four
items in domain (1O,3SF) where feature F2 takes value v4.

Appendix A describes a generalization of the analysis given by
Shepard et al. (1961) that can be used to identify the concept types
that exist within the domains in Table 2. The number of four-item
types for each domain is shown in the final column of Table 2. All
of these domains include eight items, and each item in these
domains can be represented as a triple of Boolean values. For
example, the undirected relations in domain (3O,1AR) have three
possible edges, and the three Boolean variables in this case indi-
cate whether each edge is present or absent. It is tempting to
assume that the six SHJ types apply to each domain, and Appendix
A mentions several groups of researchers (including Shepard et al.,
1961) who appear to have made this assumption. It turns out,
however, that the six SHJ types apply to only three of the domains.

Domain (3O,1SF) has the nine types shown in Figure 2c, and
domains (1O,3AF), (3O,3AF), (3O,1AF), and (3O,1AR) have the
10 types shown in Figure 2d. To see why these domains produce
different numbers of types, it is helpful to consider types 5 and 6
in Figure 2d. Both types correspond to SHJ type IV, but the two
are qualitatively different within the context of domain (3O,1AF).
Type 5 can be described as a category that includes all items where
two or more objects take value v2 on feature F, but Type 6 has no

9 (V)

3 substitutive features (SHJ types)(a)

(c)

(d)

(b)

10 (VI)

Additive features (AF types)

I II III

IV V VI

1 (I) 2 (II) 3 (III) 4 (III) 5 (IV)

6 (IV) 7 (V) 8 (V) 9 (VI)

1 (I) 2 (II) 3 (III) 4 (III) 5 (IV)

6 (IV) 7 (V) 8 (V)

1 substitutive feature (1SF types)

���

���������

���������

���

Figure 2. Concept types for the domains in Table 2. (a) A stimulus lattice
for domains (including all domains in Table 2) where each item can be
encoded as a triple of binary values. (b) Domains like (1O,3SF) and
(3O,3SF) include six types of size four that will be called the six SHJ types.
A single concept representing each type is shown, where gray nodes
indicate items that belong to the extension of the concept. (c) Domains like
(3O,1SF) include nine types of size four. The SHJ type for each concept is
shown in parentheses. (d) Domains like (3O,1AF) include 10 types of size
four.
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similar description. Experiment 1 in this article provides some
empirical evidence that humans are sensitive to distinctions of this
kind that are not captured by the six SHJ types.

A Rule-Based Account of Concept Learning

A long-term challenge for psychological research is to explain
how concept learning operates across all the domains in the con-
ceptual universe. The formal analyses described in previous sec-
tions support progress toward this goal by characterizing a large
collection of domains and identifying the types of concepts that
exist within these domains. These analyses are intended to be
theoretically neutral, and should therefore be relevant to research-
ers from many different theoretical persuasions. The goal so far
has been to characterize the many kinds of concepts that exist, not
to make any psychological claims about human learning or mental
representation.

The remaining sections of the article focus on psychological
data and computational models of learning. When characterizing
the conceptual universe, it was convenient to treat a concept as a
high-level system

�Os � �s1, s2, . . . , sn�, C : Os 3 �in, out��,

where {s1, . . . , sn} is the set of items in a given domain, and
C(si) � in if and only if item si belongs to the extension of the
concept. This extensional view of concepts is useful for some
purposes, but in order to understand how humans learn and think
about concepts it is critical to consider the intension of the function
C(�). The intension is the mental representation that allows a
learner to decide whether any given item is an instance of the
concept. For example, the intension might correspond to a rule, a
prototype, or a set of memorized exemplars.

A challenge for computational modelers is to describe some way
of constructing intensions that applies across all of the domains in
the conceptual universe. The rest of the article explores the idea
that these intensions are constructed in a compositional represen-
tation language. The language treats objects, features, and relations
as basic elements, and provides a way to combine these elements
in order to construct the intension of a concept. The compositional
nature of the language allows a relatively small set of basic
elements to combine in many different ways that are needed to
capture qualitatively different concepts across qualitatively differ-
ent domains. The predictions of this approach depend critically on
the specific language chosen, and the language proposed here is
characterized in the next section. After introducing this language,
I discuss how the resulting model is related to previous models of
concept learning.

The hypothesis that mental representations are constructed
from a compositional language can help to explain both knowl-
edge representation and learning (Fodor, 1975). Generating
concepts from a compositional language automatically provides
a complexity ordering over the resulting space of concepts,
where the complexity of any concept corresponds to the length
of its minimal description in the representation language
(Chater & Vitanyi, 2003b; Fass & Feldman, 2003; Feldman,
2000; Kemp et al., 2008a; Kemp & Jern, 2009a). Following
previous researchers, I explore the hypothesis that the minimal
description length of a concept determines its subjective com-
plexity, or the ease with which it is learned. Later sections of

the article refer to this hypothesis as the description length
hypothesis.

In order for learners to identify the minimal description of a
concept they must use some procedure to search through the space
of descriptions. A complete account of human learning will need
to characterize the search process in detail, but the description
length hypothesis is appealing in part because it abstracts away
these details. As a result, the hypothesis provides a simple initial
strategy for evaluating claims about mental representation. For
example, the hypothesis can be used to generate parameter-free
predictions for any proposed representation language, and predic-
tions of this sort will be used in this article to evaluate the relative
merits of several representation languages including propositional
logic and several varieties of predicate logic. Comparisons of this
sort can help to identify the representational assumptions that best
account for human learning, and subsequent research can then aim
to account for the data even more closely by combining these
representational assumptions with additional assumptions about
processing.

Subjective complexity can be operationalized in a variety of
ways, and experimental paradigms that focus on learning, memory,
and inductive reasoning are all relevant. A concept is subjectively
simple to the extent that it is rapidly learned and accurately
remembered. When participants do make errors in learning or
recalling a concept, their errors will tend to be consistent with
concepts that are subjectively simpler than the true underlying
concept. Similarly, if participants are provided with incomplete
information about a concept then asked to generalize the concept
to novel items, their inferences will tend to be consistent with a
subjectively simple concept that is compatible with the data that
they have seen. Although different measures of subjective com-
plexity can sometimes lead to qualitatively different results, pre-
vious researchers have found that these measures often converge
on a single, stable characterization of the relative complexities of
the concepts within a domain (Shepard et al., 1961). Later sections
of this article use learning time and classification accuracy as
measures of subjective complexity.

Predicate Logic as a Representation Language

The representation language described in this section is moti-
vated by two basic constraints. The first is that the language must
support statements about objects, features, and relations. The as-
sumption throughout is that objects, features, and relations are the
basic conceptual units that allow humans to think about multiple
domains in the conceptual universe. The second constraint is that
the language must support quantification. For example, the lan-
guage must provide a way to express the fact that the rightmost
item in domain 4 in Table 1 is an item where all of the squares
have a slash.

The best-known example of a representation language that sat-
isfies both constraints is predicate logic. Other representation
schemes could be considered, including frames (Barsalou, 1992;
Minsky, 1975) and semantic networks (Shapiro & Rapaport, 1992;
Sowa, 1984), but here I explore the extent to which predicate logic
can account for concept learning across multiple domains. There
are many versions of predicate logic, including first-order logic,
higher-order logics, and intensional logics (Montague, 1973).
Here, I focus on a language that is closely related to standard

7EXPLORING THE CONCEPTUAL UNIVERSE



first-order logic. First-order logic is at best a rough approximation
of the conceptual resources that support concept learning (Jack-
endoff, 1983; Thomas, 2009), but working with a well-known
language allows a simple initial investigation of the description
length hypothesis. To the extent that this initial investigation is
successful, future research can explore whether alternative repre-
sentation languages provide a more accurate account of human
learning.

The first-order language explored here is referred to as language
OQ, and is compared to two alternatives called FQ and OQ � FQ.
Language OQ supports quantification over objects, language FQ
supports quantification over features, and language OQ � FQ
supports quantification over objects and features. A grammar for
generating rules in language OQ � FQ is shown in Figure 3, and
five such rules are shown in the second column of Table 3. The
first production in Figure 3 indicates that each rule takes the form
@iC(i) 7 disjunction, where the right hand side specifies condi-
tions that must be satisfied if item i belongs to concept C. The right
hand side is an expression in disjunctive normal form: that is, a
disjunction of conjunctions, where each conjunction specifies a
sufficient condition for belonging to concept C. Note that ∨ is
a symbol for OR, and ∧ is a symbol for AND. Each conjunction is
built from literals, including literals like F(a) � 0 and F(a) � 0,
which indicate that object a does or does not take a certain value
for feature F. Literals like R(a, b) � 1 and R(a, b) � 1 indicate that
a relation R does or does not hold between two objects a and b.

The resources described so far are sufficient to generate rules in
propositional logic. Predicate logic, however, also supports quan-
tification, and languages OQ, FQ, and OQ � FQ all include two
quantifiers: for all (@) and there exists (?). Languages OQ and
OQ � FQ allow quantification over objects. For example, both
languages can express a rule which indicates that all objects have
feature F (@x F(x) � 1, where x is a variable that ranges over all
objects in the domain). Quantifiers can be nested—for example,
@x ?y R(x, y) � 1 indicates that for all objects x there is some
object y such that R(x, y) � 1. When quantifiers are nested,

different variables are assumed to refer to different objects. For
example, @x ?y F(y) � 1 indicates that for all x, there is some y
other than x such that F(y) � 1. Languages FQ and OQ � FQ
allow quantification over predicates. For example, both languages
can express a rule which indicates that object a has all features
under consideration (@Q Q(a) � 1, where Q is a variable that
ranges over all features in the domain). The grammar in Figure 3
can be adjusted to specify language OQ, FQ, or OQ � FQ by
editing production 10. Language OQ only allows the possibility of
ovars, or variables that refer to objects. Language FQ only allows
the possibility of pvars, or variables that refer to predicates (i.e.,
features or relations). As shown in Figure 3, language OQ � FQ
includes both variables that refer to objects and variables that refer
to predicates.

The central column of Table 3 shows five logical rules that are
expressed in full, but for readability this article primarily uses the
summary representations in the final column. The first summary
representation indicates that Fa and F�a will be used to indicate
F(a) � 1 and F(a) � 0, respectively. Conjunctions are represented
by concatenating the conjuncts: for example, F(a) � 1 ∧ H(a) � 1
is represented as FaHa. Disjunctions are represented using the �
symbol: for example, F(a) � 1 ∨ H(a) � 1 is represented as Fa �
Ha. Finally, the opening sections of the full concept descriptions
@iC(i)7 . . . are dropped, and the summary representations show
only the disjunctions on the right hand sides of the full descrip-
tions.

Table 4 shows several summary representations of rules formu-
lated in language OQ. The rule numbers correspond to the concept
types shown in Figure 2d. Rule 1 is true of any item in domain
(3O,1AF) where object b has feature F—in other words, where the
second square has a slash. Rule 2 is true of any item if objects a
and c either both have or both do not have a slash. Rule 4 is similar
in structure, and is true of any item where b and c both do not have
a slash, or where a and c both have a slash. Rule 5 is true of any
item where two or more objects have a slash. The rule indicates
that for every x, there is another object y that has a slash. If x is
chosen to be an object with a slash, the rule implies that there must
be at least one additional object with a slash. Rule 6 applies to an
item if all objects have a slash, or if object b does not have a slash
and at least one of the remaining objects has a slash. Finally, rule
10 applies to any item that has either three objects with a slash or
exactly one object with a slash. The second part of the rule is true
of all items where some object y has a slash and where every other
object z does not have a slash.

Given any candidate representation language, the description
length hypothesis proposes that the subjective complexity of a
concept is predicted by the length of the shortest rule that captures
the concept. This article assumes that the complexity of each rule
is a weighted sum based on the literals that it contains. One-place
literals (e.g., Fa, Fx, F�a, or F�x) receive a weight of one, and
two-place literals (e.g., Rab or Rx�y) receive a weight of two.
Complexity values for the five rules already described are shown
in Table 4. Assigning unit weight to each one-place literal means
that the complexity measure reduces to Feldman’s (2000) notion of
complexity when applied to a rule that does not include relations
or quantification. Weighting two-place literals more heavily than
one-place literals is consistent with the idea that each argument of
a predicate must be mentally represented: for example, represent-
ing the fact that John reads novels is assumed to be more demand-

Figure 3. A grammar for generating rules in language OQ � FQ. Gram-
mars for languages OQ and FQ are produced by editing production 10 so
that a variable must be either an object variable (ovar) or a predicate
variable (pvar), respectively. A grammar for propositional logic is pro-
duced by removing qstring(disjunction) and qstring(conjunction) from
productions 2 and 3.
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ing than simply representing the fact that John reads. Most anal-
yses in this article, however, consider domains where all literals
have the same number of places, which means that future studies
are needed to explore the assumption that two-place literals are
more complex than one-place literals.

The description-length model that relies on language OQ is
referred to as the OQ model. Similarly, I refer to the FQ model, the
OQ � FQ model, and the propositional model, which is a descrip-
tion length model that relies on the propositional subset of lan-
guage OQ. The OQ and the propositional models make identical
predictions for domains that do not support quantification, but
make different predictions when quantification is possible. Com-
paring these predictions will help to establish whether quantifica-
tion plays an important role in human concept learning. The OQ,
FQ, and OQ � FQ models also lead to different patterns of predic-
tions, and I predict that the OQ model will provide the best account of
human learning. Although it may be possible in principle for human
learners to quantify over features, the OQ model captures the idea that
it is psychologically more natural to quantify over objects than
features.

The prediction that the OQ model will perform better than the
FQ and OQ � FQ models is motivated in part by previous work
which explores the units that humans are inclined to count. The
consistent finding is that humans find it natural to count discrete
spatio-temporal units, and Spelke-objects (i.e., bounded, coherent
physical objects; Spelke, 1990) are the canonical example of these
units (Huntley-Fenner, Carey, & Solimando, 2002; Shipley &
Shepperson, 1990). For example, if preschoolers are given some
red ducks and some green ducks and then are asked to count the
number of colors, they often report the number of ducks rather than
the number of different colors (Shipley & Shepperson, 1990).
Empirical studies also suggest that young children find it easier to
count Spelke-objects than parts of these objects (Giralt & Bloom,
2000; Wagner & Carey, 2003). There is no clear consensus in the
concept learning literature about what qualifies as an object and
what qualifies as a feature, but the entities referred to as objects
(e.g., animals, artifacts, and geometric figures) tend to be closer to
discrete spatio-temporal units than the entities referred to as fea-
tures (e.g., colors, textures, and parts such as legs). As a result, the
preference for counting discrete spatio-temporal units predicts that

Table 3
Predicate Logic Representations of Concepts From Five Domains

5.

Domain Full concept description Summary
1. (3O, 3SF)
2. (3O, 1AF)
3. (1O, 2SF)
4. (3O, 1AR)

(3O ×2O, 1AR)

where
where

where
where
where and

Note. The full concept descriptions specify a concept in complete detail. For example, the first description
indicates that an item i that contains three objects a, b, and c is an instance of concept C(�) if a and b take value
0 on features F and G, respectively, or if a and c take value 1 on features F and H, respectively. The final
description captures a case where each item i specifies a relation R defined over two sets of objects. The
summary descriptions in the final column show compact representations of each concept.

Table 4
Rules in Language OQ for Several Concepts in Domain (3O,1AF)

1

4

4

1

3

3

RuleType C Positive examples

1 ,, ,

2 ,, ,

4 ,, ,

5 ,, ,

6 ,, ,

10 ,, ,

Note. The concept types correspond to labels in Figure 2d. The extension of each concept includes four items,
and the OQ-complexity of each concept is shown in the column labeled C.
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learners will be more inclined to count or quantify over objects
than features.

Other Computational Models of Concept Learning

Psychologists have developed many theories of concept learn-
ing, and this section discusses how the rule-based models evalu-
ated in this article relate to these previous contributions. All of the
models considered in this section can account for Boolean concept
learning to some extent, and a key question is whether they can
scale up and account for learning across all of the domains in the
conceptual universe.

Similarity-Based Approaches

Exemplar models propose that learners acquire a concept by
storing specific exemplars, and that classification decisions about
subsequent exemplars are based on the similarity of these exem-
plars to the stored exemplars. The similarity between two exem-
plars is typically formulated as some function of the similarity of
these exemplars along individual dimensions such as color and
size. The weights assigned to these dimensions need not be fixed,
and a similarity-based approach can learn to pay attention to the
dimensions that are most informative about category membership.
The ALCOVE model (Kruschke, 1992) is one example of this
approach, and has been used to account for the relative complex-
ities of concepts in domains 1 and 5 in Table 1 (Kruschke, 1992;
Lee & Navarro, 2002; Nosofsky, Gluck, et al., 1994).

The simplest similarity-based models focus on similarity rela-
tionships between individual exemplars, but similarity can also be
used to organize exemplars into clusters, and classification deci-
sions about subsequent exemplars can be based on their similari-
ties to these clusters. The SUSTAIN model (Love et al., 2004)
takes this approach, and has been used to account for the relative
complexities of the six concept types studied by Shepard et al.
(1961).

Feldman (2000) conducted an extensive study that explores the
relative complexities of 76 Boolean concepts, and ALCOVE and
SUSTAIN have both been applied to his data. Both models ac-
count for Feldman’s results to some extent, but neither performs as
well as the rule-based models of Feldman (2006) and Goodwin
(2006) described in the next section. Developing similarity-based
models that account for Boolean concept learning as well as the
best rule-based models is therefore an open challenge.

An even greater challenge for the similarity-based approach is to
explain how concept learning operates across all of the domains in
the conceptual universe. The experiments presented in later sec-
tions demonstrate that the complexity of a concept depends in part
on whether it can be concisely described using quantification and
relations. ALCOVE and SUSTAIN seem unable to account for this
result because both models rely on feature-based representations.
Other researchers have developed connectionist models that can
capture relations (Doumas, Hummel, & Sandhofer, 2008; Hummel
& Holyoak, 2003) and can learn to count (Rodriguez, Wiles, &
Elman, 1999), and similar techniques may make it possible to
develop next-generation versions of ALCOVE and SUSTAIN that
account for learning across a large proportion of the conceptual
universe. In their current forms, however, these models cannot be
applied to all of the domains considered in this article.

Rule-Based Approaches

Rule-based approaches propose that concepts are represented as
rules constructed in a compositional representation language. A
key motivation for these approaches is that compositional lan-
guages can be used to formulate concepts across all of the domains
in the conceptual universe. Different rule-based approaches, how-
ever, make different proposals about the nature of the underlying
representation language.

Although several authors have pointed out that rules can incor-
porate quantification and relations (Goodman et al., 2008; Good-
win & Johnson-Laird, 2011; Piantadosi, Goodman, & Tenenbaum,
2010), most of the rule-based models in the literature focus on
rules formulated in propositional logic. The rule-plus-exception
(RULEX) model proposes that humans learn concepts by con-
structing conjunctive rules and remembering exceptions to these
rules (Nosofsky, Palmeri, & McKinley, 1994). Because any rule in
disjunctive normal form corresponds to a collection of conjunc-
tions, the rules considered by RULEX are broadly compatible with
the rules considered in this article. In most sections of the article,
the predictions of the OQ model do not allow for exceptions, but
extending the model in this direction is considered toward the end
of the article.

Like the OQ model, the approach of Goodman et al. (2008)
proposes that concepts are represented as rules in disjunctive
normal form. The representation language considered by these
authors is therefore equivalent to the propositional subset of lan-
guage OQ. Goodman et al. described a probabilistic approach that
relies on a prior distribution over rules, and the prior is set up to
ensure that shorter rules have higher prior probability. Their ap-
proach can therefore be viewed as a probabilistic version of the
description length hypothesis.

Goodwin and Johnson-Laird (2011) also considered representa-
tions in disjunctive normal form. They referred to each disjunct as
a mental model, and proposed that the complexity of a concept
corresponds to the number of mental models (or disjuncts) that are
required to represent it. Their approach therefore differs from the
propositional model evaluated here, which proposes that the com-
plexity of a rule corresponds to the number of literals rather than
the number of disjuncts. Although these approaches are distinct,
the two are closely related and are motivated by the same basic
idea that human learners construct minimal representations in
disjunctive normal form.

Feldman (2006) worked with rules that are collections of im-
plications, where each implication takes the form

G4 F1 ∧ F2 ∧ . . . ∧ Fn

This implication states that any item with features F1–Fn also has
feature G. The algebraic complexity of a concept is a function of
the minimal set of implications that can be used to characterize it.
The default function proposed by Feldman (2006) is equivalent
to the number of literals contained in the set of implications, and
is therefore an instance of the description length approach. Al-
though the implications considered by Feldman are different from
rules in disjunctive normal form, there is an important relationship
between these representations that is discussed toward the end of
the article.

The four rule-based approaches just described have been applied
to a variety of data sets. The analyses most relevant to this article
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are presented by Feldman (2006) and Goodwin and Johnson-Laird
(2011), who both focus on Feldman’s data set of 76 Boolean
concepts. Feldman’s algebraic complexity approach and the men-
tal models approach both account well for the data, but the mental
models approach achieves slightly higher quantitative fits. Both
models perform better than ALCOVE and SUSTAIN. This article
also considers Feldman’s data set and shows that the OQ model
achieves fits that are roughly comparable to the mental models
approach.

Although it is important to show that the OQ model can account
for previous studies that focus on Boolean concepts, the more
pressing goal here is to explore how people learn concepts that
cannot be concisely described in propositional logic. Most previ-
ous rule-based models focus on propositional logic, but it should
be possible to extend these models in much the same way as the
OQ model extends the propositional model evaluated in this arti-
cle. Any successes achieved by the OQ model should therefore be
interpreted more broadly as successes achieved by the rule-based
approach to concept learning. The rule-based models considered in
this section make different commitments of various kinds, but the
similarities between these models far outweigh the differences.

Representation Versus Process

The discussion of alternative approaches in previous sections
focused primarily on the different representations used by these
approaches. The OQ model relies critically on predicate logic as a
representation language, and stands in sharp contrast to alterna-
tives that do not rely on a compositional representation language.
In addition to characterizing the nature of mental representations,
a complete cognitive model must also specify the processes that
operate over these representations. The OQ model, however,
makes minimal claims about cognitive processing. The one as-
sumption required is that cognitive processes are sensitive to the
length of representations formulated in language OQ, but there are
many ways in which this assumption might be satisfied. This
section describes how the OQ model is compatible in principle
with the processing assumptions made by several previous ac-
counts of learning and reasoning.

Many previous accounts that rely on predicate logic treat logic
as an account of reasoning or inference. These accounts, for
example, propose that logical inference helps to explain how
humans decide which conclusions follow from a given set of
statements (Rips, 1994). The mental models approach was devel-
oped in opposition to this view, and proposes that reasoning is
better described as a process of constructing and inspecting mental
models. The OQ model makes no commitment to either of these
views. The model treats predicate logic as an account of mental
representation instead of an account of reasoning, and therefore
makes no claim about whether human reasoning is better charac-
terized as mental theorem-proving or model-based inference. It
seems possible that humans rely on both kinds of inference strat-
egies, and the OQ model is fully compatible with this possibility.

Logical inference is clearly one way in which logical represen-
tations could be used, but probabilistic inference is another possi-
bility. Several researchers have discussed how probabilistic infer-
ence can operate over logical representations (Goodman et al.,
2008; Kemp, Goodman, & Tenenbaum, 2008b; Piantadosi et al.,
2010), and the approaches described by these researchers can be

used to develop probabilistic models of learning and reasoning that
rely on representations formulated in language OQ. Logic and
probability are sometimes viewed as competing approaches, and
indeed the two may conflict when both are treated as accounts of
how people infer what follows from a given set of premises
(Oaksford & Chater, 2002). Logic and probability, however, can
be naturally combined if predicate logic is treated as an account of
knowledge representation and probability theory is used to explain
how logical representations are learned and used for inductive
inference.

This section has argued that the OQ model is compatible with
several different kinds of processing assumptions. The present
article focuses on knowledge representation rather than reasoning,
and exploring an approach that makes minimal assumptions about
processing is the simplest initial way to evaluate the representa-
tional merits of language OQ. Ultimately, however, the OQ model
will need to be supplemented with a detailed account of process-
ing, and the general discussion outlines some steps that can be
taken in this direction.

Empirical Studies of Concept Learning

Previous researchers have collectively explored concept learn-
ing across many domains, but any given study typically considers
a single domain or a small handful of domains. A comprehensive
account of concept learning should apply across multiple domains,
and here I evaluate the OQ model using data from 11 different
domains. The set of domains is large by the standards of previous
research, but even so it covers only a small part of the conceptual
universe. To compensate in part for this limitation the domains are
deliberately chosen to include a variety of concepts, including
feature-based concepts, relational concepts, and concepts that rely
on quantification. Where possible, I analyze previously-published
data sets and compare predictions of the OQ model with the best
published results for a given problem. Some of the domains,
however, have not previously been studied, and I therefore report
results for two new experiments.

As described already, the conceptual universe includes real-
world categories such as “aromatic hydrocarbons” and “armed
robbery” in addition to artificial examples such as categories of
geometric stimuli. The analyses in the following sections focus
primarily on simple artificial stimuli, because stimuli of this kind
provide the simplest initial way to explore how humans learn about
systems of objects, features, and relations. The final analysis,
however, focuses on kinship systems, and therefore illustrates how
the theoretical approach applies to an important real-world do-
main.

Because the studies that follow consider a relatively large num-
ber of domains, the analysis of any single domain is necessarily
limited. Only one study is discussed for each domain, and each
study uses either average learning times or average learning accu-
racies to assess the relative subjective complexities of the concepts
that can be formulated within a given domain. The data emerging
from these experiments are sufficient to distinguish the OQ model
from several alternatives, but at least two important aspects of
concept learning are left unaddressed. First, different individuals
may learn in different ways, and a concept that is difficult for one
person may be relatively easy for another to learn. Second, differ-
ent measures of conceptual complexity sometimes produce differ-
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ent results, and these differences can be informative about the
context-dependence of human learning. Although the current anal-
yses do not address either of these factors, the results support the
conclusion that predicate logic is a valuable representational sub-
strate for models of human concept learning. It may therefore be
useful to consider extensions of the OQ model that account for
individual differences and context-sensitive reasoning, and the
general discussion outlines some possible steps in this direction.

Feature-Based Domains Related to Shepard et al.
(1961)

The work of Shepard et al. (1961) is undoubtedly the most
influential study of conceptual complexity. These researchers char-
acterized the six SHJ types shown in Figure 2b and studied how
these types are learned in domains including (1O,3SF) and
(3O,3SF) from Table 2. They explored several different ways of
measuring conceptual complexity, and found that the same com-
plexity ordering emerged for all measures across all of the domains
that they considered. From least to most complex the ordering is
I 	 II 	 III, IV, V 	 VI, where types III, IV, and V are of roughly
equal complexity.

The family of domains in Table 2 includes several of those that
Shepard et al. (1961) considered. As discussed previously, it is
natural to expect that the six SHJ types apply across all of these
domains, but in reality some of these domains include nine or 10
types. This section describes an experiment that explores four of
the domains in Table 2 and tests the prediction that human learners
are sensitive to differences that are not captured by the SHJ types.

The four domains considered include (3O,3SF), a domain orig-
inally studied by Shepard et al. (1961), along with domains
(3O,1AF), (1O,3AF), and (3O,3AF). One goal of the experiment
is to provide a comprehensive investigation of the size four con-
cepts that can be formulated within these domains. Figure 2d
suggests that the three domains with additive features include 10
distinct types of size 4, and the experiment explores the complete
set of 10 types across all of the four domains. Previous studies of
domain (3O,1AF) have been organized around the six SHJ types
(Goodwin, 2006; Mathy, 2010), but these types do not accurately
reflect the different kinds of concepts that can be formulated
within this domain. Including the full set of 10 types is necessary
in order to draw general conclusions about how people think about
the domain.

A second goal of the experiment is to focus specifically on the
role that quantification plays in concept learning. The most striking
difference between domain (3O,3SF) and the three domains with
additive features is that additive features open up the possibility of
representations that rely on quantification. For example, type 5 in
domain (3O,1AF) includes items where two or more objects have
a slash (see Table 4), and type 10 includes items where either one
or three objects have slashes. Quantification or counting is possible
in principle for all three of the domains with additive features, but
the entities available for counting differ across these domains. For
example, the items in domain (3O,1AF) include three objects and
one feature, and therefore support quantification over objects but
not over features. The items in domain (1O,3AF) include one
object and three features, and therefore support quantification over
features but not over objects. Studying how concept types 5 and 10
are learned within these domains can therefore help to establish

whether human learners find it natural to quantify over objects and
features. The OQ model supports quantification over objects but
not features, and the experiment explores whether this aspect of the
model is consistent with human learning.

Method.
Participants. Eighty Carnegie Mellon University (CMU) un-

dergraduates participated for course credit. All were naive with
respect to the purpose of the experiment.

Materials. The experiment was carried out using a custom
built graphical interface. The items in each domain were cards that
each included a vertical array of shapes (i.e., objects). In domain
(3O,3SF), the first shape was either a purple triangle or a purple
circle, the second shape was either an orange square or a green
square, and the final shape was either a purple square with a black
horizontal band or a purple square with a black vertical band. The
items for domains (3O,1AF), (3O,3AF), and (1O,3AF) were sim-
ilar to the items shown in Table 2 except that the objects on each
card were arranged vertically rather than horizontally. In domain
(3O,1AF), the three shapes were purple squares where each square
either did or did not have a black slash. In domain (3O,3AF), all
three shapes were purple squares, and the first, second, and third
squares either had or did not have a thick black boundary, a grid
of dots, and a slash, respectively. In domain (1O,3AF), each item
showed a purple square that either had or did not have a thick black
boundary, a grid of dots, and a slash. The three additive features
(i.e., boundary, grid, and slash) were based on stimuli developed
by Sakamoto and Love (2004).

The 10 concept types in Figure 2d were used to create 10
concepts from each domain. The concepts chosen for each domain
were directly comparable. For example, concept 1 in each domain
can be described as follows: all cards where the lowest square had
a black horizontal band (domain (3O,3SF)); all cards where the
lowest square had a slash (domain (3O,1AF)); all cards where the
lowest square had a slash (domain (3O,3AF)); all cards where
the single square had a slash (domain (1O,3AF)).

Procedure. Each participant was assigned to a single domain
and learned all 10 concepts from that domain. Twenty participants
were assigned to each domain. For each learning problem in each
domain, all eight items were simultaneously presented on screen,
and participants were able to drag them around and organize them
however they liked. Each problem had three phases: a learning
phase, a memory phase, and a description phase. During the
learning phase, the four items belonging to the current concept had
red boundaries, and the remaining four items had blue boundaries.
Participants could press a key at any time to move to the memory
phase, where the items were displayed in random positions on the
screen, the colored boundaries around the items were removed,
and participants were asked to sort the items into the red group and
the blue group. If they made an error they returned to the learning
phase, and could retake the test whenever they were ready. If they
successfully sorted the cards, they proceeded to the description
phase and were asked to provide a written description of the two
groups of cards.

A timer was visible on screen during the learning phase, and
counted down to zero from a starting point of 300 s (5 min). The
timer stopped when participants moved to the memory phase, but
started again if they made an error and returned to the learning
phase. Once the timer had reached zero, participants were allowed
to proceed past the memory phase even if they could not success-
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fully sort the items. The maximum time spent learning any concept
is therefore 300 s.

Before starting the first of the 10 problems, the procedure was
introduced using an introductory problem where the eight items
were words drawn from two categories: fruits (banana, peach,
apple, pear) and vehicles (truck, car, boat, and plane). All partic-
ipants completed this introductory problem first, and the order of
the remaining 10 concepts was pseudo-randomized across partic-
ipants using a Latin square. The color assignments (red or blue)
were also pseudo-randomized—in other words, the “red groups”
learned by some participants were identical to the “blue groups”
learned by others.

Model predictions. Table 5 shows predictions about the rel-
ative complexities of the concepts in all four domains. The pre-
dicted complexity of each concept is based on the length of its
minimal description in language OQ and was computed using a
method described in Appendix B. Some concepts admit multiple
descriptions of minimal complexity, and Table 5 includes one
minimal description for each concept.

The minimal descriptions and complexities in Table 5 are based
on the concepts that include the gray nodes in Figure 2d. The
complexity values in parentheses show the complexities of the
complements of these concepts—in other words, concepts that
include the white nodes in Figure 2d. In most cases the concepts
and their complements have equal complexities, but language OQ
predicts that concepts 8 and 9 are simpler than their complements
in domains (3O,1AF) and (3O,3AF). Because the experiment used

arbitrary labels (i.e., “red items” and “blue items”) for positive and
negative examples, the complexities for concepts and their com-
plements are averaged to generate the final predictions.

The predicted complexity for each concept in domain (3O,3SF)
is identical to its complexity in propositional logic. Because do-
main (3O,3SF) does not support quantification, language OQ
reduces to propositional logic in this case, and the minimal de-
scriptions for domain (3O,3SF) are all propositional rules. Domain
(3O,1AF), however, includes several concepts that can be con-
cisely represented using quantifiers. The minimal descriptions for
concepts 1, 2, 4, 5, 6, and 10 are identical to the rules in Table 4,
and were explained in a previous section.

Domains (3O,1AF) and (3O,3AF) present an interesting con-
trast. Because the same feature F applies to all three objects in
domain (3O,1AF), rules such as @xFx can be formulated. In do-
main (3O,3AF), however, each feature applies to only one object,
which means that rules such as @xFx are not possible. In domain
(3O,3AF), however, each item has a characteristic pattern (slash
for object a, spots for object b, and frame for object c), which
opens up the possibility of statements such as “all objects have
their characteristic patterns.” Language OQ can capture statements
of this kind if we introduce an indicator feature I that indicates
whether each object has its characteristic pattern. The model
predictions in Table 5 make use of this indicator feature, and the
resulting complexity predictions are identical to those for domain
(3O,1AF). For example, the shortest description for concept 5

Table 5
Minimal Descriptions and OQ-Complexities for the 10 Concepts in Experiment 1

Type (3O, 3SF) C (3O, 1AF) C

1 1 (1) 1 (1)

2 4 (4) 4 (4)

3 4 (4) 4 (4)

4 4 (4) 4 (4)

5 6 (6) 1 (1)

6 6 (6) 3 (3)

7 7 (7) 5 (5)

8 7 (7) 3 (4)

9 7 (7) 3 (4)

10 12 (12) 3 (3)

Type (1O, 3AF) C (3O, 3AF) C

1 1 (1) 1 (1)

2 4 (4) 4 (4)

3 4 (4) 4 (4)

4 4 (4) 4 (4)

5 6 (6) 1 (1)

6 6 (6) 3 (3)

7 7 (7) 5 (5)

8 7 (7) 3 (4)

9 7 (7) 3 (4)

10 12 (12) 3 (3)

Note. The complexity values in parentheses show the complexities of the complements of the 10 concepts in
Figure 2d. For domain (3O,3AF), the indicator feature I indicates whether each object has its characteristic
pattern. The rows are grouped into blocks that correspond to the six SHJ types—for example, concepts 3 and 4
both belong to SHJ type III.
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indicates that all members of the concept have two or more objects
with patterns.

The indicator feature I in Table 5 goes beyond the specification
of domain (3O,3AF) in Table 2, and assumes that learners are able
to align the three features shown there (F1, F2, and F3). Alignment
is possible in this case because each feature is additive. Feature
alignment may also be possible in domains that do not rely on
additive features. For example, learners may find it natural to align
a size feature (big/small) with a volume feature (loud/soft) because
the values of both features indicate quantities of some kind (L.
Kotovsky & Gentner, 1996). Characterizing the full set of cases
where features can be aligned is a challenge for future work, and
addressing this challenge will help to explain how people think
about the full set of domains in the conceptual universe (see Table
2). For present purposes, I simply adopt the working hypothesis
that additive features can be aligned.

Domain (1O,3AF) in Table 5 includes a single object only, and
quantification over objects captures no useful information in this
case. The predicted complexities for domain (1O,3AF) are there-
fore identical to the propositional complexities predicted for do-
main (3O,3SF).

Several qualitative predictions can be extracted from the quan-
titative predictions in Table 5. First, the OQ model predicts that
domains (3O,1AF) and (3O,3AF) include concepts that belong to
the same SHJ class (e.g., concepts 5 and 6) but have different
subjective complexities. Second, type VI is traditionally consid-
ered to be the most difficult of the six SHJ types, but the OQ model
predicts that this type (which corresponds to type 10 in Table 5) is
not the most difficult type within domains (3O,1AF) and
(3O,3AF). Third, the OQ model predicts that humans find it
natural to quantify over objects, and therefore predicts that the two
domains which support quantification over objects ((3O,1AF) and
(3O,3AF)) will produce different results than the domains which
do not support quantification over objects. Finally, the OQ model
predicts that humans do not find it natural to quantify over fea-
tures, and predicts that a domain which supports this kind of
quantification (domain (1O,3AF)) will produce the same kind of
results as a domain that does not support quantification over
features (domain (3O,3SF)).

Results. The computer interface recorded the length of time
participants spent on the learning phase for each concept. Total
learning times for the 10 concepts suggested that domain (3O,1AF)
was the easiest domain, and domain (3O,3SF) was the most
difficult. On average, participants took 397, 509, 546, and 667 s to
learn all 10 concepts in domains (3O,1AF), (3O,3AF), (1O,3AF),
and (3O,3SF), respectively (standard deviations are 397, 250, 210,
and 149 s).

Because the total learning times varied widely within each
domain, all remaining analyses will use learning times that are
normalized to sum to 1 for each participant. Normalizing in this
way factors out individual differences in speed and provides a
sensitive measure of the relative difficulties of the concepts within
each domain. One disadvantage of working with normalized learn-
ing times is that these normalized times cannot be directly com-
pared across domains. For example, the normalized learning time
for concept 5 in domain (3O,3AF) cannot be compared with the
normalized learning time for concept 5 in domain (1O,3AF).
Comparisons of this kind, however, are unlikely to be informative
because the domains are not matched for factors including percep-

tual complexity. Choosing stimuli that are matched in this way
would be ideal but is unlikely to be possible. For example, domains
(3O,3AF) and (1O,3AF) are matched in the sense that they use exactly
the same features, but in domain (1O,3AF) these features occupy the
same spatial location, which presumably increases perceptual load
and makes the items in this domain more difficult to process. As a
result, it is meaningful to compare the complexity profile over the 10
concepts in domain (3O,3AF) with the corresponding profile for
domain (1O,3AF), but less meaningful to compare the complexities of
individual concepts within each domain.

Figure 4a shows the mean normalized learning times for each
domain, and indicates the relative difficulties of the concepts
within each domain. The results in Figure 4a support the qualita-
tive predictions identified previously. Domains (3O,3SF) and
(1O,3AF) produce results that are broadly consistent with the
standard complexity order over the six SHJ types. Domains
(3O,1AF) and (3O,3AF), however, produce results that differ
qualitatively from the SHJ type ordering. For example, type 10
(which corresponds to SHJ type VI) is not the most difficult type
in domain (3O,1AF) or domain (3O,3AF).

The results also suggest that pairs of concepts which belong to
the same SHJ type can differ in subjective complexity. There are
five such pairs: concepts 3 and 4, 5 and 6, 7 and 8, 7 and 9, and 8
and 9. The model predicts that differences within these pairs will
be small or non-existent in domains (3O,3SF) and (1O,3AF), and
paired-sample t-tests indicate that none of these differences is
statistically significant. Within domain (3O,1AF), the model suc-
cessfully predicts that concept 5 is easier to learn than concept 6,
and that concepts 8 and 9 are easier to learn than concept 7. As
shown in Figure 4a, two out of these three differences are statis-
tically significant (p 	 .001 and p 	 .01). In domain (3O,3AF),
the learning times for concepts 8 and 7 are not significantly
different, but concept 5 is easier to learn than concept 6 (p 	 .01).

Figure 5 compares human learning times with complexity pre-
dictions according to four languages: propositional logic, language
OQ, language FQ, and language OQ � FQ. Domain (3O,3SF)
does not support quantification over objects or features, and all
four languages therefore generate equivalent propositional rules as
minimal descriptions of the 10 concepts. Domains (3O,1AF) and
(3O,3AF) open up the possibility of object quantification, and the
languages that support object quantification account best for the
results for these domains. Domain (1O,3AF) opens up the possi-
bility of feature quantification, but the two languages which sup-
port feature quantification (FQ and OQ � FQ) account poorly for
learning times within this domain. Language OQ is the only
language that successfully accounts for the result from all four
domains, suggesting that humans find it natural to quantify over
objects but not features.

Correlations between each set of model predictions and learning
times are shown in Figure 5, and the interval below each correla-
tion is a 95% confidence interval generated by bootstrapping at the
level of individual participants. All models achieve identical cor-
relations for domain (3O,3SF), and for each of the three remaining
domains the correlation achieved by the two best models for that
domain is significantly higher than the correlation achieved by the
remaining two models. The relevant confidence intervals do not
overlap for domains (3O,1AF) and (1O,3AF), indicating that the
difference between correlation coefficients is significant at the 0.05
level. The confidence intervals do overlap for domain (3O,3AF), but
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the correlation achieved by models OQ and OQ � FQ exceeded the
correlation achieved by the other models for more than 95% of the
bootstrap samples, indicating that the difference between correlation
coefficients is significant at the 0.05 level.

Any rule in OQ is also a rule in language OQ � FQ, and the
comparison between the OQ and OQ � FQ models is therefore
especially interesting. The two models generate identical minimal
descriptions for all domains except (1O,3AF). Domain (1O,3AF)
includes several concepts that can be concisely described using
quantification over features. For example, concept 5 includes “all
items where the square has two or more of the three features.” The
OQ � FQ model takes advantage of this possibility and predicts
that concept 5 is relatively easy to learn in domain (1O,3AF). The
OQ model cannot quantify over features, and therefore generates a
minimal description for concept 5 that is substantially longer. The
results in Figure 4a indicate that concept 5 is not especially easy in
domain (1O,3AF), and therefore suggest that language OQ � FQ
is too expressive to accurately capture human learning. Language
OQ accounts better for the data, suggesting that the constraints
captured by this language may correspond to constraints that shape
how mental representations are constructed.

The written descriptions generated by participants provide ad-
ditional evidence that many of them relied on quantification over
objects. None of the domain (3O,3SF) participants described a
criterion for distinguishing between red and blue cards that re-
ferred to quantification over objects. In domain (3O,1AF), how-
ever, 15 out of 20 descriptions of concept 5 and 13 out of 20
descriptions of concept 10 referred to quantification over objects.
One representative description of concept 5 stated that “the red
cards have fewer than 2 slashed rectangles” and “the blue cards

have at least 2 slashed rectangles.” A representative description of
concept 10 indicated that “the red group has 1 slash or 3 slashes”
and that “the blue group has either 2 slashes or 0 slashes,” and
another mentioned that “the blue cards have an even number of
slashed rectangles.” As mentioned earlier, concept 10 corresponds
to SHJ type VI. Shepard et al. (1961) previously noted that type VI
can be learned by distinguishing between odd counts (1 or 3) and
even counts (0 or 2), and the written descriptions suggest that this
strategy is especially natural within domain (3O,1AF).

For domain (3O,3AF), 14 out of 20 descriptions of concept 5
and 11 out of 20 descriptions of concept 10 referred to quantifi-
cation or counting. One representative description of concept 5
stated that “reds have two or more patterned boxes.” The corre-
sponding counts for domain (1O,3AF) were substantially smaller:
4 out of 20 descriptions of concept 5 and 3 out of 20 descriptions
of concept 10 referred to quantification or counting. One of the few
descriptions that referred to quantification indicated that red items
had “multiple features,” and blue items had “only one feature”
(concept 5), and the same participant indicated that “red � even
number of features,” and “blue � odd number of features” (con-
cept 10). Descriptions like these suggest that people can count or
quantify over features, but the relative rarity of these descriptions
suggests that it is psychologically more natural to quantify over
objects rather than features.

Thus far, I have focused on differences in learning patterns across
the four domains in Figure 4 and argued that the predictions of the OQ
model are broadly compatible with the main differences that emerge.
The model, however, makes some specific predictions within indi-
vidual domains that are not supported and that highlight some of its
limitations. Two discrepancies between model predictions and the
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human data are especially apparent. First, concept 2 in domain
(3O,3SF) is easier than concepts 3 and 4, although the OQ model
predicts no difference in learning times across these concepts. The
empirical result here is consistent with previous studies which
have documented that SHJ type II is subjectively less complex
than SHJ type III (Shepard et al., 1961). A classic explanation of
this result is that type II can be described by referring to two
features (F and H in Table 5), but the simplest description for type
III refers to all three features (Shepard et al., 1961). A preference
for rules that refer to fewer features is consistent with the key
psychological notion of selective attention (Kruschke, 1992), but is
not captured by the complexity measure used in this article. Some
previous rule-based models are limited in the same way—note that
Boolean complexity and the mental models account both predict
that types II and III are equally difficult (Goodwin & Johnson-
Laird, 2011; Lafond, Lacouture, & Mineau, 2007; Vigo, 2006).
Nosofsky, Palmeri, and McKinley (1994) and Goodman et al.
(2008), however, have presented rule-based approaches that can
account for the difference in complexity between types II and III.
A more sophisticated version of the description-length approach
should also be able to account for this result. For simplicity, the

OQ model assumes that the complexity of a rule is determined
only by the number of symbols that it contains, but a more
principled description-length account would take the identity of
these symbols into account and would use shorter codes for fre-
quently encountered symbols (Grünwald, 2007). As a result, a rule
with repeated symbols would have a shorter description than a rule
where all symbols are different even if the two rules are matched
for overall length.

A second limitation of the model is that it fails to predict that
concept 3 in domain (3O,1AF) is more difficult than concept 4.
Because concepts 3 and 4 are both instances of SHJ type III, most
existing models of concept learning would also fail to predict this
difference. Many of the written descriptions of concept 4 men-
tioned that the items in one group can be organized into a pro-
gression that starts with the item with no slashes and finishes with
the item with three slashes, and where one slash is added with each
successive item. The positive instances of concept 4 in Table 4 are
arranged from left to right according to this progression. This
progression can be viewed as a global property of concept 4 that
emerges only when all positive instances of the concept are con-
sidered simultaneously. The model is not sensitive to global prop-
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erties of this kind, and focuses instead on learning a criterion of
concept membership that can be applied to any given item in
isolation. Although humans are sometimes sensitive to global
properties such as the sequential progression just described,
whether or not these properties are noticed is likely to depend on
the experimental paradigm used. It is possible that concepts 3 and
4 would be equally difficult in the context of a learning paradigm
where only one item is visible at any time.

Discussion. Although the model fails to account for some
aspects of the data, the overall pattern of results supports three
general conclusions. First, there is a clear qualitative difference
between the results for domains (3O,3SF) and (1O,3AF) and
the results for domains (3O,1AF) and (3O,3AF). Even though all
four domains may initially appear to be isomorphic, the behavioral
results support the analysis in Figure 2 which identifies different
conceptual types within these domains. Second, the differences in
learning times across the four domains are broadly consistent with
the hypothesis that the mental representations of some concepts
rely on quantification or counting. In particular, concepts 5 and 10
within domain (3O,1AF) can be concisely expressed using quan-
tification, and the description length model successfully predicts
that these concepts are relatively easy to learn. Third, the results
suggest that it is psychologically more natural to quantify over
objects than features. All three conclusions are consistent with
language OQ, which accounts relatively well for learning times
across all four domains considered.

Quantification plays an obvious role in natural language and
previous studies have explored how humans learn and think about
quantifiers such as “for all” and “there exists” (Brooks & Braine,
1996; Johnson-Laird & Byrne, 1991; Szymanik & Zajenkowski,
2010). Relative to this previous work, the contribution of Exper-
iment 1 is to explore the role that quantification plays in concept
learning. Previous accounts of conceptual complexity typically
rely on representations that are similar to some form of proposi-
tional logic, but Experiment 1 suggests that any comprehensive
account of conceptual complexity should also take quantification
into account.

Although the written descriptions support the general prediction
that participants rely on quantification over objects, they also
expose a limitation of the model. Language OQ uses universal and
existential quantifiers to describe concepts 5 and 10, but partici-
pants often describe these concepts using numbers. Both kinds of
descriptions are similar in one important respect, because both rely
on specifications of quantity. Ultimately, however, a complete
account of concept learning should include some psychologically
realistic proposal about how numbers are mentally represented
(Carey, 2009). Language OQ was able to account for the data from
domain (3O,1AF) because it supports concise descriptions of state-
ments involving small numbers, but this language becomes in-
creasingly unwieldy as the numbers involved increase in size.
Consider, for example, the variant of domain (3O,1AF) where each
item includes 10 objects. The concept including all items with five
or more slashes seems conceptually simple, but the minimal OQ
representation is relatively complex: ?v?w?x?y?zFvFwFxFyFz.
This article focuses on language OQ because this language is the
natural next step beyond propositional logic, but future studies can
explore richer languages that can directly express numerical state-
ments. In particular, richer representation languages will be needed

in order to explain how people learn concepts that rely on rela-
tively large numbers.

Because the written descriptions are often informative, it is
possible that the mental representations used for learning the 10
concepts are formulated in a natural language such as English. The
data suggest that the underlying representation language incorpo-
rates quantification over objects, and English is one representation
language that satisfies this criterion. Note, however, that a simple
description length approach will not account for the data if English
is the underlying representation language. Like language OQ �
FQ, English supports both object and feature quantification, which
means that concepts 5 and 10 have short English descriptions in
both domain (3O,1AF) and domain (1O,3AF). If English is the
underlying representation language, then some additional principle
needs to be invoked to explain why quantification over objects is
more natural than quantification over features.

Although Experiment 1 suggests that participants are more
likely to rely on quantification over objects than quantification
over features, there are good reasons to believe that quantification
over features or dimensions is part of the human conceptual
repertoire. Some everyday concepts appear to rely on quantifica-
tion over features or dimensions (Sassoon, 2011). A teacher may
classify a child as a “prodigy” if her performance is exceptionally
good along some dimension, and as “abnormal” if there is some
dimension along which she is far from average. A nurse who is
examining a group of children to determine which children have
spots, which children have fever, and which children have joint
pain may classify any child as “sick” who has one or more of these
symptoms. Relational concepts such as “same” or “different” are
also naturally formulated using quantification over features or
dimensions: for example, two objects are different if there is some
feature that distinguishes between the two. Examples like these
suggest that it may be valuable to explore why quantification over
features is exploited in some contexts but not others. The nature of
the features involved is likely to be relevant—for example, it may
be more natural to quantify over features like “has glasses” and
“has an earring” than features like “has a rash,” because features
like “has glasses” can be conceptualized in terms of the presence
or absence of discrete spatio-temporal units. It is also possible that
paradigms that allow participants to compare pairs of objects are
more likely to elicit quantification over features than paradigms
where the stimulus objects are presented serially. The process of
comparing two objects may lead participants to count the respects
in which they are different, and the fact that comparisons of this
sort were possible in Experiment 1 may help to explain why a
small number of participants gave written descriptions that explic-
itly referred to quantification over features.

The results in Figure 4a are broadly consistent with results from
previous studies that have explored domains similar to (3O,1AF).
One general theme that emerges is that SHJ type VI, which
corresponds to type 10, is not the most difficult type in this
domain. Mathy (2010) explored a domain where each item in-
cluded three black balls and a horizontal line, and where each ball
was either above or below the line. Mathy focused on SHJ types IV
and VI, and found that type VI was easier than type IV. His study
considered multiple instances of type IV that were chosen at
random and therefore included instances of types 5 and 6 in Figure
2d. His results are therefore consistent with the data in Figure 4a,
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which show that the average learning time for concepts 5 and 6
exceeds the average learning time for concept 10.

Goodwin (2006) explored a domain where each item included
three switches, and each switch was set either to the left or the
right. He considered SHJ types III–VI, and chose instances of
these types that correspond to types 3, 5, 8, and 10, respectively.
Consistent with the data in Figure 4a, he found that concept 3 was
more difficult than the remaining three concepts. Note, however,
that type 4 in Figure 4a is an instance of Type III and is relatively
easy to learn, which challenges Goodwin’s conclusion that type III
is uniformly more difficult in the context of domain (3O,1AF).

Although previous studies have explored domains similar to
(3O,1AF), they have not acknowledged that this domain contains
10 types and therefore have not documented the relative complex-
ities of these types. The design of Experiment 1 was made possible
by the formal characterization of the conceptual universe, and the
results suggest that this characterization can provide a useful
foundation for empirical studies and computational modeling. For
example, the set-theoretic characterization of domain (3O,1AF)
led to the distinction between types 5 and 6 in Figure 2d, and the
same basic approach can be used to identify the full set of cases
that must be considered in any domain.

Boolean Concepts

Experiment 1 built on the work of Shepard et al. (1961) by
exploring concept learning across four qualitatively different do-
mains. Feldman (2000) extended the work of Shepard et al. in a
different direction by systematically exploring two closely-related
domains that I refer to as (1O,3SF) and (1O,4SF). Table 2 shows
one possible instantiation of domain (1O,3SF), and domain
(1O,4SF) is similar except that each item in the domain now
includes an additional substitutive feature. A recent study by Vigo
(2011) includes data for domain (1O,2SF) in addition to the two
domains considered by Feldman, but here I analyze Feldman’s
data in order to compare with models that have previously been
evaluated on this data set.

Shepard et al. (1961) focused on concepts of size four, but
Feldman systematically explored concepts of different sizes. In
domain (1O,3SF), he considered all types of sizes 2, 3, 4, 5, and 6.
In domain (1O,4SF) he considered all types of sizes 2, 3, 4, 12, 13,
and 14. For each concept considered, positive examples of the
concept were presented in the upper half of the screen and labeled
as “Examples,” and negative examples appeared in the lower half
of the screen and were labeled as “NOT examples.” Each concept
was displayed for 5n seconds, where n is the either the number of
positive examples or the number of negative examples, depending
on which is smaller. After the training period had finished, partic-
ipants viewed all items in the domain one by one and had to
indicate whether each one was a positive or a negative example of
the concept. The dependent measure is the proportion of items
classified correctly.

Several computational approaches have been applied to Feld-
man’s data set (Feldman, 2000; Vigo, 2009), including the alge-
braic complexity (Feldman, 2006) and mental models (Goodwin &
Johnson-Laird, 2011) approaches previously described. Here, I
compare the OQ model to the mental models approach, which has
achieved the best published results on Feldman’s data set. As
mentioned already, the mental models approach relies on a repre-

sentational scheme that is identical to the propositional subset of
language OQ. In the context of Feldman’s experiment, the OQ
model and the mental models approach are therefore closely re-
lated, and the only real difference is that the two rely on different
complexity measures. The OQ model measures the complexity of
a rule by counting the total number of literals that it contains, but
the mental models approach counts the total number of disjuncts in
the rule.

Model fits for the mental models approach are shown in the left
column of Figure 6. The labels for each plot use notation intro-
duced by Feldman (2000). For example, the plot for concept
family 3[2] shows results for all types from the three feature
domain (1O,3SF) where either the total number of positive exam-
ples or the total number of negative examples is 2. Goodwin and
Johnson-Laird (2011) reported model fits for analyses that com-
bine data from all of the plots in Figure 6, but separating these
plots is preferable because concepts from different families were
presented for different lengths of time during training. Figure 6
shows that the mental models approach achieves relatively good
correlations across all of the families. Note that complexity is
inversely related to accuracy, which means that perfect perfor-
mance corresponds to a correlation of 
1.

If the OQ model is applied in the same way as the mental
models approach, the correlations achieved are shown in the mid-
dle column of Figure 6. The OQ model performs substantially
worse than the mental models approach, but the right column
shows that the model performs better if adjusted to capture two
strategies that some participants may have used. First, some par-
ticipants may have chosen to encode the negative examples rather
than the positive examples in cases where the positive examples
outnumbered the negative examples. Second, some participants
may have relied on a brute force strategy to memorize a set of
examples instead of identifying the shortest possible representation
in language OQ. Appendix C describes how both strategies were
formalized in order to generate the results in the right column of
Figure 6. The same general approach can be used to adjust the
mental models approach, and the resulting correlations are listed in
the caption of Figure 6 and are comparable to the correlations
shown in the left column of the figure. Overall, then, the mental
models approach performs better than the OQ model if neither is
adjusted, but the two achieve comparable fits when the OQ model
is adjusted to allow for the specific nature of Feldman’s experi-
ment.

The same adjustment could be used to generate predictions of
the OQ model for all analyses in this article, but in most cases this
adjustment does not affect the model predictions. In Experiment 1,
for example, all of the concepts in a given family had the same
number of positive examples and the same number of negative
examples. The strategy of memorizing the smaller set therefore
does not apply, and the strategy of brute-force memorization does
not affect the relative learnabilities of the concepts because all had
the same number of positive examples. For simplicity, all figures
except Figure 6 will therefore include unadjusted predictions only,
and the correlations produced by adjusting the model predictions
are listed in Table C1 in Appendix C.

Although the adjusted OQ model and the mental models
approach perform similarly on Feldman’s data set, the two
approaches make qualitatively different predictions in other
contexts. The mental models approach predicts that all Boolean
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concepts including a single positive example are equally easy to
learn regardless of the number of features that the example
possesses. For instance, the approach predicts that a concept of
size 1 should be equally easy to learn regardless of whether it
belongs to family 3[1] or family 10[1]. In contrast, the OQ
model predicts that single-item concepts become more difficult
to remember as more features are added to the domain. Addi-
tional studies are needed to explore differences of this kind and
to determine whether minimizing the total number of literals or
minimizing the total number of disjuncts provides the better
account of human learning across the full space of Boolean
concepts.

Here, however, the primary focus is on concepts that go beyond
Boolean concepts in various ways, and the key challenge for

mental model theory is whether it will be able to account for
concept learning across the entire conceptual universe. An impor-
tant limitation of the theory is that it does not currently explain
how learners acquire concepts that rely on quantification and
relations, including type 5 in domain (3O,3SF; see Table 4).
Mental model theory is often used to explain how people draw
inferences from statements involving quantification (Bucciarelli &
Johnson-Laird, 1999), but current versions of the theory do not
explain how people introduce quantifiers to simplify their mental
representations of a situation. Goodwin and Johnson-Laird (2011)
acknowledged this limitation but suggested that future versions of the
theory may be able to explain how people acquire mental represen-
tations that incorporate quantification and relations. At present, then,
the OQ model provides broader coverage of the conceptual universe
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Figure 6. Empirical results and model predictions for the six concept families in Feldman’s (2000) data set.
The three columns show predictions of the mental models approach, the unadjusted OQ model, and the adjusted
OQ model. The mental models approach can also be adjusted, and the resulting correlations for the six families
of concepts are –0.98, –0.91, –0.97, –0.79, –0.88, and –0.57.
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than does mental model theory, but future work on mental model
theory may be able to expand its explanatory scope.

Ternary Features

Like most previous studies of conceptual complexity, the studies
considered so far all focus on binary features, or features that take
two values. The conceptual universe, however, includes many
domains where features take three or more values. Domain 5 in
Table 1 is one example that has been studied by Lee and Navarro
(2002) and Aitkin and Feldman (2006). This section discusses the
results presented by Aitkin and Feldman and compares them with
predictions of the OQ model.

Domain 5 in Table 1 includes nine items in total, and a domain
specification is provided in Figure 7a. Figures 7c and 7d show the
four concept types of size three and the five concept types of
size four. For example, the first concept of size three includes the
three items with diagonal crosshatching. It is convenient to repre-
sent the three values for each feature as 0, 1, and 2. For example,
F(a) � 0 or F(a) � 1 or F(a) � 2, where a is the single object in
the domain, and F is the first feature. The third example in Table
3 shows how a concept can be described using these three-valued
features. The full concept description includes equality statements
like F(a) � 1 and inequality statements like F(a) � 1. For binary
features, F(a) � 1 is equivalent to F(a) � 0, which means that
inequality statements contribute nothing new to the language. For
ternary features, however, inequality statements are qualitatively
different from equality statements. Because the domain of interest
includes a single object only, F(a) � 1 can be written concisely as
F1 and F(a) � 1 can be written as F�1. The summary description in
the third row of Table 3 follows this convention.

Table 6 shows the minimal descriptions of the nine concepts in
Figures 7c and 7d. The complexity values C indicate the OQ-
complexities of the concepts, and the values in parentheses indicate
the complexities of the complements of the concepts. The comple-
ment of the third concept of size 4 has complexity five, and a minimal
description for this complement is F3 � F1G3 � F2G2. All other
concepts have the same complexity as their complements.

Figure 8 shows the empirical complexity values for each con-
cept reported by Aitkin and Feldman (2006). The task used was
similar to the task that generated Feldman’s (2000) data set.
During training, all items in the domain were presented on screen.
Positive examples of the current concept were shown in the upper
half of the screen and labeled “In the category.” Negative exam-
ples were located in the lower half of the screen and labeled “Not
in the category.” After a fixed presentation time, the nine items
were presented one by one and participants indicated whether or
not each one was a positive example. The results in Figure 8 are
reproduced from Aitkin and Feldman’s study and show the mean

3

(c)(b)

(a)

(d)

21 43

5421

Figure 7. (a) A specification of a domain (1O,2SF) that includes two ternary features. (b) A grid showing the
nine items in the domain. (c) The four types of size three within the domain. (d) The five types of size four.

Table 6
Minimal Descriptions and Complexity Values for the Domain
With Ternary Features

Size Type (1O, 2SF) C

(a) Size 3 1 1 (1)

2 4 (4)

3 4 (4)

4 6 (6)

(b) Size 4 1 2 (2)

2 3 (3)

3 4 (5)

4 4 (4)

5 6 (6)

Note. (a) Minimal descriptions for the three-item types. If a is the single
object within the domain, F1 is equivalent to Fa � 1, and F�1 is equivalent
to Fa � 1. The values in parentheses show the OQ-complexities of the
six-item concepts that are complements of the three-item concepts in
Figure 7c. (b) Minimal descriptions and complexity values for the four-
item types.

20 KEMP



log proportion correct. The types in Figures 7c and 7d are of sizes
three and four, respectively, but some participants learned con-
cepts of sizes six and five that were complements of these con-
cepts. The results reported by Aitkin and Feldman, and replotted in
Figure 8, are collapsed over these presentations, and the predic-
tions of the OQ model are therefore based on averages of the
complexities of the concepts and their complements.

The model accounts for the broad trends in the data and suc-
cessfully predicts the easiest and the most difficult concept in each
set. Figure 8 shows that the model results are comparable to the
algebraic complexity results reported by Aitkin and Feldman
(2006). Unlike algebraic complexity, the OQ model successfully
predicts that concepts 2 and 3 in the size 3 set are of roughly equal
complexity, and that concept 2 is less complex than concept 3 in
the size 4 set. Unlike the OQ model, algebraic complexity suc-
cessfully predicts that concept 3 is less complex than concept 4 in
the size 4 set. Following Aitkin and Feldman, the algebraic com-
plexity results are based on the assumption that participants en-
coded either the positive or the negative examples, depending on
which set was smallest. If the same approach is used to adjust the
OQ model results, concepts 3 and 4 in the size 4 set are predicted
to have equal complexity, which improves the fit of the OQ model.

Lee and Navarro (2002) used a different experimental paradigm
to assess the complexity of the size 3 concepts and found that type
1 was easiest to learn, type 3 was second easiest, and that types 2
and 4 were the most difficult to learn. This ordering differs from
Aitkin and Feldman’s (2006) result in Figure 8 and illustrates that
different measures of conceptual complexity do not always pro-
duce identical results. One important difference between the two
experiments is that Aitkin and Feldman presented all items in the
domain simultaneously along with their category labels, whereas
Lee and Navarro required participants to learn from feedback as
they classified items one by one. Both paradigms have been
previously explored (Feldman, 2000; Nosofsky, Gluck, et al.,
1994; Shepard et al., 1961), and Shepard et al. (1961) found that
they produce consistent measures of conceptual complexity in
domains such as (1O,3SF) and (3O,3SF) in Table 2. It is not clear
why the two paradigms produce divergent results for the domain
with two ternary features, but this result nevertheless exposes a
limitation of the OQ model. The OQ model does not explain why
different tasks might produce different measures of conceptual

complexity, and results of this kind confirm that the representa-
tional assumptions of the OQ model will ultimately need to be
supplemented with some detailed assumptions about cognitive
processing.

Taken overall, the results in Figure 8 provide some initial
evidence that language OQ can help to explain how humans think
about domains where features take more than two values. The
conceptual universe includes many such domains, and existing
studies have only explored a small fraction of the full set of
possibilities. Ultimately, however, studies involving features with
many values may prove to be just as informative about human
learning as studies that focus on binary features.

Relational Domains Related to Shepard et al. (1961)

Previous sections have focused on domains that include features
but not relations. I now turn to domains that include relations
rather than features. The most natural starting point is domain
(3O,1AR) in Table 2, which includes eight items and a single
undirected relation and is closely related to the eight-item domains
studied in Experiment 1. Domain (3O,1AR) includes the 10 con-
cept types in Figure 2d, and minimal representations for each type
are shown in Table 7. As before, these representations can be
treated as summaries of more complete descriptions, and the fourth
row in Table 3 shows one example of a complete description for
this domain. The descriptions assume that relation R cannot mean-
ingfully hold between any object and itself—for example, Raa is
not a valid literal. The meaning of any quantified statement should
be adjusted accordingly. For example, @xRxa is true in a domain
with three objects if and only if Rba and Rca are true.

Complexity values for the 10 types are shown in Table 7. Recall
that each literal involving a relation is assigned a complexity value
of two. For example, the single literal Rac in the description of
concept 1 specifies a relationship between two objects (a and c)
and is therefore considered twice as complex as the literal Fb,
which specifies information about a single object only. The rela-
tive complexity values for the 10 concepts are broadly similar to
the relative complexities for domain (3O,1AF), which are repro-
duced in Table 7 for comparison. For example, concept 5 receives
the equal lowest complexity score in both domains.
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Figure 8. Empirical results and model predictions for the domain with ternary features. The plots in the first
column are based on results from Figures 3 and 4 in Aitkin and Feldman (2006) and show how difficult the
concept types in Figures 7c and 7d were for participants to learn. The remaining columns show predictions
according to the OQ model and Feldman’s algebraic complexity model.
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Crockett (1982) described a study where participants learned
several concepts of size 4 from domain (3O,1AR). The objects in
the domain were three people a, b, and c, and the relation indicated
which pairs of people liked each other. A social network of this
kind is said to be balanced if people who like each other share the
same opinions about the remaining individuals in the network, and
if people who dislike each other have different opinions (Heider,
1958). There are four balanced networks, including the network
where all individuals like each other and the three networks where
two of the individuals like each other and both dislike the third
individual. The set of these four networks corresponds to SHJ type
VI, and Crockett was therefore especially interested in how well
type VI would be learned within domain (3O,1AR).

Crockett (1982) did not describe his study in full, but the
concepts considered included SHJ types I, II, and VI, along with
one additional concept that belonged to either type III, IV, or V.
Crockett (p. 35) reported that types I, II, and VI were learned “with
about equal ease” and “significantly more easily” than the addi-
tional concept from type III, IV, or V. Although the details are not
provided, the most important qualitative result is that type VI does
not emerge as the most difficult concept. Because type VI is
traditionally considered to be the most difficult type, Crockett
interpreted his result as evidence that social learning relies on a
domain-specific principle of structural balance.

The complexity values in Table 7 suggest an alternative inter-
pretation. If quantification is allowed, then type VI (corresponding
to type 10 in the table) has a relatively simple representation that
can be glossed as “networks with either three links or one link.”
The OQ model therefore suggests that the relative simplicity of
type VI in domain (3O,1AR) may depend on a domain-general
ability to construct representations that incorporate quantification
or counting. This domain-general account predicts that type VI
should be relatively easy to learn in any domain that supports
quantification or counting. Domain (3O,1AF) is one example,
because type VI in this domain can be described as “items where
either three squares have slashes or one square has a slash.”
Consistent with this prediction, Experiment 1 found that type VI
(corresponding to type 10 in Figure 4a) was indeed one of the
easiest concepts to learn within domain (3O,1AF).

One limitation of Crockett’s (1982) study is that it does not
acknowledge the existence of 10 types within domain (3O,1AR).
For example, focusing on the six SHJ types leads him to suggest
that types III, IV, and V are “nonsense classifications” that cannot
“be described simply in a word or phrase” (Crockett, 1982, p. 34).
The analysis in Figure 2d challenges this claim. In particular, types
5 and 6 in Table 7 are both instances of SHJ type IV, and type 5
can be concisely described as “all networks with two or more
links.” Future researchers may therefore find it useful to repeat
Crockett’s study but to include all 10 types in Table 7.

Here, however, I turn to a second relational domain. One mo-
tivation for studying relations is that relational representations can
sometimes express information that is difficult or impossible for
feature-based representations to capture. It follows that there
should be relational domains which produce patterns of learning
that have no counterpart in feature-based domains. Domain
(3O,1AF) is a natural feature-based analog of the relational domain
(3O,1AR). Each object in domain (3O,1AF) could be used to
represent a pair of individuals, and the slash feature could indicate
whether or not the relation holds between the pair. Table 7 sug-
gests, however, that the relative complexities of the types within
domain (3O,1AR) are broadly similar to the relative complexities
of the corresponding types within domain (3O,1AF). For example,
concept 5 is predicted to be relatively easy to learn within both
domains. The next section therefore considers a different relational
domain that enables a sharper comparison between relational and
feature-based representations.

Relations and Quantification

Each item in domain (3O,1AR) specifies a relation defined over
a single set of objects. Relations, however, can also capture rela-
tionships between two sets of objects. For example, consider a set
of people and a set of foods, and a relation R(p, f) which is true if
person p likes food f. This section describes results from a concept
learning experiment that explored a simple domain of this kind.

The domain considered included a set O1 of three people and a
set O2 of two foods, and is labeled (3O � 2O,1AR) or (3O � 2O)
for short. The domain includes a single additive relation R : O1 �

Table 7
Minimal Descriptions and OQ-Complexities for All 10 Types in Domains (3O,1AR) and
(3O,1AF)

Type (3O, 1AR) C (3O, 1AF) C

1 2 (2) 1 (1)

2 4 (4) 4 (4)

3 6 (6) 4 (4)

4 4 (4) 4 (4)

5 2 (2) 1 (1)

6 6 (6) 3 (3)

7 6 (6) 5 (5)

8 6 (6) 3 (4)

9 6 (6) 3 (4)

10 6 (6) 3 (3)

Note. The complexity values in parentheses show the complexities of the complements of the 10 concepts in
Figure 2d.
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O2 3 {0, 1} that indicates whether each person likes each food.
The domain includes 64 distinct items, and an example is shown in
Figure 9c, where the black horizontal lines indicate that a person
does not like a certain food. The domain can be used to formulate
concepts that are intrinsically relational—for example, the concept
that includes all items where some food is liked by all three people.

Domain (3O � 2O) can be compared with a domain (6O � 1O)
where there are six people and only one food. Figure 9d shows an
example item from this domain. To ensure that this domain
matches domain (3O � 2O) as closely as possible, the item
represents a binary relation R : O1 � O2 3 {0, 1} where O1

includes six people, and O2 includes a single food. Note, however,
that the second argument of the relation is constant, which means
that domain (6O � 1O) could also be characterized using a feature
F : O13 {0, 1} that indicates whether each individual in O1 likes
fruit.

Domain (6O � 1O) can be used to evaluate two hypotheses
about how the items in domain (3O � 2O) are mentally repre-
sented. One possibility is that the mental representations involved
are intrinsically relational—if so, then there should be some rela-
tional concepts that are relatively easy to learn in domain (3O �
2O) but that have no simple counterparts in domain (6O � 1O). A
second possibility is that the items in domain (3O � 2O) are
represented using a collection of six binary features. For example,
the first feature might indicate whether Alf likes fruit, the second
might indicate whether Alf likes candy, and so on. If so, then
learning patterns for domains (3O � 2O) and (6O � 1O) should be
similar, because each item in domain (6O � 1O) can also be
represented as a collection of feature values.

Like Experiment 1, Experiment 2 also explores the role of
quantification. The experiment includes relational concepts that
can be concisely described using quantifiers—for example, the
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Figure 9. (a) Ten concepts explored in Experiment 2. The odd-numbered concepts have concise descriptions
that use relations and quantifiers. The even-numbered concepts are controls for the odd-numbered concepts. (b)
Permutations used to create the control concepts in (a). Concepts 2, 8, and 10 were created by applying
permutation A to concepts 1, 7, and 9, respectively. Concepts 4 and 6 were created by applying permutation B
to concepts 3 and 5. (c) An example item from domain (3O � 2O). This item corresponds to the leftmost positive
item shown for concept 1 in (a). (d) An example item from domain (6O � 1O) that matches the example item
in (c).
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concept in domain (3O � 2O) that includes items where all of the
individuals like fruit. The experiment also includes control con-
cepts that admit no simple relational description, and I predict that
the relational concepts will be easier for participants to learn than
the control concepts.

Method.
Participants. Forty CMU undergraduates participated for

course credit.
Materials. Because there are 64 items in each domain the

space of all possible concepts is too large to explore in full.
Experiment 2 focuses instead on the 10 concepts shown in Fig-
ure 9. The items used in the actual experiment are similar to the
cards in Figures 9c and 9d, but Figure 9a shows each item as a
graph where the three black circles represent people and the two
white squares represent foods. Four positive examples and five
negative examples of each concept are shown. Because there are
64 items in total, the combined number of positive and negative
instances should equal 64 for each concept, but in order to
make the task experimentally tractable participants were given
only the nine examples shown in Figure 9a.

The 10 concepts in Figure 9a were chosen as follows. The
odd-numbered concepts have simple descriptions that involve
quantification. For example, concept 1 includes items where Alf
likes all foods, and concept 3 includes items where all of the
people dislike fruit. The even-numbered concepts are controls for
the odd-numbered concepts. Each item specifies binary values for
six (person,food) pairs, and the control concepts are created by
permuting the order in which these values appear. Figure 9b shows
the two permutations that were applied.

Model predictions. Table 8 shows the complexity values for
each concept predicted by the OQ model. Complexity values for
the complements of these concepts are shown in parentheses.
Because the experiment used arbitrary labels (i.e., “red items” and
“blue items”) for positive and negative examples, the complexities
for concepts and their complements are averaged to generate the
final predictions. Table C1 in Appendix C shows that similar
predictions are generated if the OQ model is adjusted to acknowl-
edge that participants may have preferred to encode the smaller set
of examples.

The unadjusted complexity values are plotted in Figure 10b. The
model makes two qualitative predictions. First, there will be a
difference in learning patterns across the two domains. Second,
within domain (3O � 2O) the model predicts that the complexities
of the concepts with simple relational descriptions (odd-numbered
concepts) will be lower than the complexities of the corresponding
control concepts (even-numbered concepts).

Procedure. Each participant was assigned to domain (3O �
2O) or domain (6O � 1O) and learned the 10 concepts from that
domain. The procedure was similar to the procedure for Experi-
ment 1: Participants learned each of the 10 concepts from their
assigned domain, and the interface recorded how long they took to
learn each concept.

An important departure from Experiment 1 is that the items
presented during each test phase were not physically identical
to the items presented during the corresponding training phase.
Consider domain (3O � 2O) where each item was a card like
the example in Figure 9 that contained six (person, food) pairs.
During any given phase, the six pairs were listed in the same
order on all of the cards. This order, however, differed across
training and test phases. Permuting the order in this way en-
sured that participants could not learn the 10 concepts by
focusing on the visual gestalts created by the dark strikethrough
bars on each card. Successful completion of the task therefore
required participants to focus on the information conveyed by
each card, not just its superficial visual appearance. As for all
other aspects of the task that were randomized, the order of the
(person,food) pairs was pseudo-randomized so that each do-
main (3O � 2O) participant could be paired with a domain
(6O � 1O) participant who experienced exactly the same ran-
domization.

Results. Domain (3O � 2O) was easier than domain (6O � 1O)
overall. On average, domain (3O � 2O) participants took 1,124 s to
learn all 10 concepts, but domain (6O � 1O) participants took 1,321
s (standard deviations were 398 s and 404 s, respectively). As for
Experiment 1, all subsequent analyses will focus on normalized
learning times that sum to 1 for each participant.

Figure 10a shows the normalized learning times for both con-
ditions. The two qualitative predictions identified previously are

Table 8
Minimal Descriptions and OQ-Complexities for the 10 Concepts in Experiment 2

Type (6O × 1O) C (3O × 2O) C

1

2

3

4

5

6

7

8

9

10

4 (4) 2 (2)

4 (4) 4 (4)

6 (6) 2 (2)

6 (6) 6 (6)

8 (8) 2 (2)

8 (8) 8 (8)

12 (14) 2 (2)

12 (14) 8 (6)

14 (8) 4 (4)

14 (8) 8 (8)

Note. For domain (6O � 1O), objects a–f correspond to the six black circles in the visual representation shown,
and object m corresponds to the white square. For domain (3O � 2O), objects a–c correspond to the three black
circles in the visual representation shown, and objects m and n correspond to the two white squares. Complexity
values in parentheses show the complexities of the complements of the 10 concepts.
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both supported. First, the two domains produce qualitatively dif-
ferent results. Second, the results for domain (3O � 2O) show a
sawtooth pattern where each odd-numbered concept is substan-
tially easier than its even-numbered counterpart. Paired-sample
t-tests indicate that all of these differences are statistically signif-
icant at the 0.01 level. These pairwise differences support the
hypothesis that the odd-numbered concepts can be concisely rep-
resented using quantifiers and relations, but that similarly concise
descriptions are not available for the even-numbered concepts. In
contrast, the results for domain (6O � 1O) show no systematic
differences between odd and even-numbered concepts, and pair-
wise t-tests indicate that none of these differences is statistically
significant. The results for domain (6O � 1O) therefore suggest
that the results for domain (3O � 2O) depend specifically on the
relational structure of this domain.

Figure 11 compares the learning times for the two domains with
predictions based on the propositional and the OQ models. Be-
cause domain (6O � 1O) has no relational structure, quantification
over objects is the only relevant difference between language OQ
and propositional logic. It turns out that quantification does not
enable concise descriptions of the 10 concepts considered, and the
OQ and propositional models make identical predictions about
domain (6O � 1O). Figure 11 shows that both models account
well for learning times for this domain. In contrast, the OQ model
alone accounts for the data from domain (3O � 2O), suggesting
that participants think about the concepts in this domain in a way
that is intrinsically relational and that incorporates quantification.
Each panel in Figure 11 includes a correlation and a bootstrapped
95% confidence interval, and the difference between the correla-
tions achieved by the propositional and OQ models for domain
(3O � 2O) is significant at the 0.05 level.

The concept descriptions generated by participants provide fur-
ther evidence for the role of quantification in concept learning. For
example, one description of concept 5 in domain (3O � 2O)
indicated that the blue cards are items where “one of the two
choices is liked by everyone.” One description of concept 7 indi-
cated that the blue cards include items where “there exists some-
one who doesn’t like both fruit and candy.” Concept descriptions
for domain (6O � 1O) included no comparable descriptions, and
many participants indicated that “there was no apparent pattern”
and that they simply memorized the groups.

Discussion. The results in Figures 10 and 11 support two
general conclusions. First, some of the concepts in the conceptual
universe are intrinsically relational. The items in domains (3O �
2O) and (6O � 1O) all specify whether six relational links are
present or absent, and could therefore be represented as a collec-
tion of six binary features. This representation, however, fails to
predict the clear difference between patterns of learning across the
two domains. The second general conclusion is that the humans
rely on quantification when learning relational concepts. The five
even-numbered concepts are closely related to the five control
concepts, and the only important difference is that the control
concepts cannot be concisely described using quantifiers. The
even-numbered concepts are consistently easier to learn within
domain (3O � 2O), suggesting that participants relied on quanti-
fiers when learning the concepts in this domain.

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

(a) (b)

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

*** **** ******

Normalized learning times OQ model predictions

(3O× 2O)

(6O× 1O)

Figure 10. (a) Normalized learning times for the 10 concepts in Experiment 2. (b) Normalized OQ-complexity
values.
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Figure 11. Normalized learning times for Experiment 2 plotted against
normalized complexity values predicted by the propositional model and the
OQ model.
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Many previous researchers have studied relational concepts
(Doumas et al., 2008; Gentner & Kurtz, 2005; Hummel & Ho-
lyoak, 2003; Kemp, Tenenbaum, Niyogi, & Griffiths, 2010; Mark-
man & Stilwell, 2001; Tomlinson & Love, 2007), and it is often
suggested that feature-based representations are not rich enough to
capture the structure of many concepts. Experiment 2 applied this
idea to the study of conceptual complexity. Most previous ac-
counts of conceptual complexity focus on features rather than
relations, but Experiment 2 suggests that a comprehensive account
of conceptual complexity must incorporate both quantification and
relations. The OQ model satisfies this criterion, and accounts
relatively well for the results of Experiment 2. This experiment,
however, considered just two domains, and additional studies are
needed to explore whether the OQ model provides a successful
account of conceptual complexity across the many relational do-
mains in the conceptual universe.

Other Learning Problems

This article has considered how concepts are learned across
multiple domains in the conceptual universe. As mentioned earlier,
each concept considered can be viewed as a high-level system

�Os � �s1, s2, . . . , sn�, C : Os3 �in, out��, (1)

where {s1, . . . , sn} is the set of items in a given domain, and
C(si) � in if and only if item si belongs to the extension of the
concept. Although I have focused on concept learning, other
learning problems may be equally informative about the nature
of human learning. This section briefly considers two such
problems: learning a relation defined over items and learning a
single item.

Consider first a problem where participants are asked to learn
which pairs of items are valid instances of a relation. For example,
the items {ci} might be directed graphs over n nodes (see domain
7 in Table 1), and the relation R(ci, cj) might be true whenever
graph cj is the transitive closure of graph ci. Building on the
formulation in (1), the relation learning problem can be formalized
as the problem of learning a high-level system

�Os � �s1,s2, . . . , sn�, R : Os � Os3 �in, out��. (2)

A closely related problem has been studied in the literature on
analogical reasoning. Problems of the form A is to B as C is to
? can be formulated as inductive problems where the task is to
learn a binary relation analogous(�,�) given the single example
analogous(A, B). This article has focused on problems where
the extension of a concept or relation is presented in full and
must be memorized, but inductive learning can also be studied
across all of the domains in the conceptual universe.

High-level systems like (1) and (2) refer to a set of items Os,
where each item may be a semantic system in its own right. This
article has focused on problems where the items are taken for
granted, and the problem is to partition these items into positive
and negative examples of a concept. Learning a single item,
however, can also be a challenge, especially in domains where
each item carries a substantial amount of information. For
example, if each item ci is a directed graph, memorizing just
one of these items may be relatively challenging.

Kemp et al. (2008a) studied the problem of single-item learning in
a domain where each item is a directed graph. The six items in their
study are shown in Figure 12a. Each graph is defined over a set of
objects {a, b, c . . .}, and each panel in Figure 12a shows the edges in
a given graph. For example, the star graph is a case where every object
sends an edge to object a and all objects have self-edges. The bipartite
graph is a case where objects {a, b, c, d, e} all send edges to objects
{f, g, h}. The transitive graph is a case where the objects can be
organized into a ranking starting with a such that each object sends
edges to all lower-ranked objects. All of the graphs have 15 edges in
total, and are therefore equally complex from the perspective of a
brute-force learner who simply memorizes the list of edges.

Kemp et al. (2008a) measured how long participants took to learn
each graph, and asked participants to rate the complexity of each
graph after they had learned it. Mean learning times and complexity
ratings are shown in Figure 12b. These two measures of subjective
complexity produced converging results, and Kemp et al. proposed
that the subjective complexity of each graph is captured by its de-
scription length in a logical language. The logical descriptions in
Figure 12a are minor notational variants of the representations that
they proposed, and Figure 12c plots the description length of each
graph. Recall that one-place literals (e.g., T(f)) receive a weight of
one, and two-place literals (e.g., R(x, y)) receive a weight of two. For
example, the description of the bipartite graph has complexity seven
because it includes five one-place literals and one two-place literal.
Comparing Figures 12b and 12c suggests that the description length
measure provides a relatively good account of the relative complex-
ities of the six graphs.

The logical representations in Figure 12a are closely related to the
OQ rules considered in previous sections. Each representation in
Figure 12a includes multiple components that are separated by peri-
ods, and these components correspond to disjuncts in a longer logical
statement expressed in disjunctive normal form. The top row of Table
9 shows two rules in disjunctive normal form. Each rule includes three
disjuncts, and the second row shows how each disjunct can be
converted into an implication with a conjunction on the right hand
side.1 In both cases, the collection of implications is equivalent to the
Disjunctive Normal Form (DNF) rule if we assume that the extension
specified by the set of implications is the minimal extension consistent
with the full set (Muggleton & De Raedt, 1994). For example, we
need to assume that an item i belongs to concept C only if it is picked
out by at least one of the implications at level 2 of Table 9. The third
row of Table 9 shows that a set of implications can be represented in
summary format, and these summary representations correspond to
the logical representations shown in Figure 12a. For example, the
right column of Table 9 suggests how the representation of the
transitive graph in Figure 12a can be viewed as a summary of a rule
in disjunctive normal form. This representation indicates that ab, bc,
cd, de, and ef are all edges in the graph, and that any other pair xz
corresponds to an edge if there is some object y such that xy and yz
are both edges.

One additional piece of information is required to interpret
the logical representations in Figure 12a. Two of the represen-
tations include a horizontal line, and the implications below the

1 Note that the implications take the same general form as the implica-
tions that are the foundation of Feldman’s (2006) algebraic complexity
model.
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line specify exceptions to the relation defined above the line.
For example, the representation of the exception graph indicates
that objects f, g, and h belong to the extension of concept T. By
the minimal extension assumption, all remaining objects do not
belong to the extension of T. The rule R(x, y) 4T�(x) ∧ T(y)
indicates that relation R holds between all pairs where x does
not belong to T and y belongs to T. The pair af is an exception
to this rule, and is therefore specified below the line. A more

formal description of how exceptions are represented is pro-
vided by Kemp et al. (2008a). Earlier sections of this article did
not consider exceptions to logical rules, but previous research-
ers have found that taking exceptions into account can allow
rule-based accounts to provide a closer account of human
learning. For example, the RULEX model achieves good fits to
human data by combining rules with exceptions (Nosofsky,
Palmeri, & McKinley, 1994).
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Figure 12. Single item learning. (a) Six graphs studied by Kemp et al. (2008a) and minimal descriptions for
each graph. (b) Learning times and human complexity ratings for each graph. (c) Description lengths for each
graph.

Table 9
Relationship Between Rules in Disjunctive Normal Form (DNF) and Collections of Implications

Representation

1. DNF

2. Implications

3. Summary

Note. Row 1 shows rules in DNF that characterize a concept C and a relation R. Row 2 shows how these rules
can be converted into collections of implications, one for each disjunct. The implications in row 2 are equivalent
to the rules in row 1 if we consider the minimal extension consistent with each set of implications. Row 3 shows
summary representations of the implications in row 2. The final statement in the summary representation on the
right is equivalent to @x@y@z R(x, z) 4 R(x, y) ∧ R(y, z), which appears in Figure 12a.
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This article has focused on concept learning rather than relation
learning or single-item learning, but all three problems provide a
way to explore how humans learn and represent information. The
ultimate goal is to develop accounts that help to explain how
humans solve all of these problems across all of the domains in the
conceptual universe. Much work remains to be done, but the
results reported in this article provide some initial evidence that
the OQ model represents a step in the right direction.

A Real-World Domain: Kinsfolk

Most of the domains shown in Table 1 and discussed in this
article include items that are simple and relatively abstract, such as
configurations of different geometric shapes. This section briefly
describes how the general approach developed in this article can
provide insight into kin classification across cultures.

Domain 9 in Table 1 focuses on siblings alone, but real-world
kinship systems also include terms for parents, grandparents,
aunts, uncles, and many other relatives. Figure 13a shows a family
tree that includes 32 relatives of an individual labeled as “Ego.”
The colors indicate how English kinship terms organize these
relatives into categories. For example, the pink squares indicate
that Ego uses the same term (“grandmother”) to refer to his
mother’s mother (MM) and his father’s mother (FF). For present
purposes, suppose that a kinship system is defined as a partition of
the 32 relatives in Figure 13a into categories. English speakers rely
on the system shown in Figure 13a, but other languages rely on

different partitions of the family tree. For example, English in-
cludes just two terms for grandparents (“grandmother” and “grand-
father”), but Mandarin includes four terms that can be glossed as
“maternal grandmother,” “maternal grandfather,” “paternal grand-
mother,” and “paternal grandfather.”

Experiment 1 in this article was developed by systematically char-
acterizing all concepts that can be formulated within four domains,
then measuring the subjective complexity of each of these concepts.
In principle, the same approach could be applied to the domain of
kinship. Because there are 32 relatives in Figure 13a, the number of
possible partitions of these relatives is the 32nd Bell number, which is
around 1026. The full space of systems is too large to explore in
practice, but an experiment where participants learn different systems
from this space could help to reveal the factors that make kinship
systems difficult or easy to learn. An alternative approach is to treat
kin terminologies across languages as the outcome of a natural ex-
periment (Nerlove & Romney, 1967). Other things being equal,
kinship systems settled on by the languages of the world are likely to
be subjectively simpler than other systems which are theoretically
possible but never found in practice.

The description length hypothesis generates testable predictions
about which kinship systems will be observed across languages.
Figure 13b shows a logical representation of the English kinship
system shown in 13a. The language includes two primitive features
(FEMALE(�) and MALE(�)) and two primitive relations
(PARENT(�) and CHILD(�)), and all other relations are defined as
combinations of these primitives. The system in Figure 13b cor-
responds to a series of implications—for example, x is the mother
of y if and only if x is a parent of y and x is female. The right hand
side of each implication is in disjunctive normal form, and the
language is therefore consistent with the representation language
considered in previous sections of this article.

The complexity of a kinship system can be defined as the length
of its shortest logical representation. Kemp and Regier (2012) have
explored the idea that this complexity measure can help to predict
which kinship systems are found across languages. Complexity is
not the only relevant factor. For example, one of the simplest
possible kinship systems includes just two terms, one for male
relatives and one for female relatives. No language includes a
kinship system of this kind, and one possible explanation is that
this system is not useful for referring to specific individuals. Kemp
and Regier formalized this notion of utility and showed that the
kinship systems of the world tend to achieve a near-optimal
tradeoff between complexity as measured by description length
and utility. For present purposes, the relevant aspect of this result
is that the description length hypothesis can help to account for
data from an important real-world domain.

General Discussion

This article introduced a systematic way to characterize a large set
of domains and to identify the qualitatively different concepts that can
be formulated within these domains. Characterizing the conceptual
universe provides a foundation for studies of concept learning, and I
discussed empirical studies including two new experiments that ex-
plore a total of 11 different domains. Comparing patterns of learning
across multiple domains provides strong constraints on theories of
concept learning, and should ultimately help to develop general-
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Figure 13. Kin classification. (a) A family tree that includes 32 relatives
of an individual labeled as Ego. The colors indicate relatives (e.g., mother’s
mother [MM] and father’s mother [FM]) that belong to the same category
(e.g., “grandmother”) according to the English kinship system. (b) A
minimal description of the English kinship system.
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purpose approaches that help to explain how humans learn and think
about all of the domains in the conceptual universe.

As a first step toward a general-purpose model of concept learning,
this article proposed and evaluated the OQ model, a rule-based
approach that relies on predicate logic as a representation language.
Rule-based approaches can be directly applied across all of the do-
mains in the conceptual universe, but it is less clear how alternative
approaches to concept learning would achieve the same explanatory
scope. I evaluated the OQ model using empirical results from 11
different domains, and the model performed relatively well in all
cases. Previous rule-based approaches have focused on propositional
logic, but the results of the two experiments suggest that rule-based
approaches will need to move beyond propositional logic in order to
account for learning across the entire conceptual universe. In partic-
ular, the propositional model was unable to explain why participants
found it relatively easy to learn concepts that can be concisely de-
scribed using quantifiers.

The experimental results also suggested that quantification is
not indiscriminately applied by human learners. The OQ, FQ, and
OQ � FQ models are all very similar, and the only difference
between the three is whether they allow quantification over ob-
jects, features, or both. The OQ model accounted best for the data,
suggesting that humans find it more natural to quantify over
objects than features.

The OQ model and the characterization of the conceptual uni-
verse provided here should both be viewed as starting points that
can be improved upon in subsequent research. The following
sections describe some limitations of the current proposals and
identify some of the most important directions for future work.

Toward a More Complete Characterization of the
Conceptual Universe

The set-theoretic characterization of the conceptual universe
developed here includes a vast number of domains but does not
fully cover the space of possibilities. For example, it is straight-
forward to extend the characterization to include continuous-
valued features such as hue, and categorical features that have an
ordered set of values (e.g., a size feature that takes values small,
medium, and large). More challenging is to allow for interactions
between features—for example, if objects can vary with respect to
several continuous features, these features may combine in a way
that is integral or separable (Garner, 1976; Shepard, 1964).

A second important direction for future work is to provide a
systematic characterization of the kinds of problems that can be
formulated within each domain. This article focused on a single,
simple problem—learning a concept when the concept’s extension
is presented in full. Other tasks are possible (Goodwin, 2006;
Love, 2002; Love et al., 2004; Shepard et al., 1961), including
tasks that focus on inductive learning. To understand the relation-
ships between the many possible tasks it may be useful to organize
them into a taxonomy. Kemp and Jern (2009b) have taken an
initial step in this direction by developing a taxonomy of inductive
problems that includes generalization, identification, and catego-
rization, along with several other problems. Combining a taxon-
omy of problems with a characterization of the conceptual uni-
verse may help to identify the most productive directions for future
studies to explore. The ultimate goal is clear: psychologists should

eventually aim to understand how all of the problems are ad-
dressed across all of the domains in the conceptual universe.

Detecting Objects, Features, and Relations

The OQ model works with items that are characterized as
systems of objects, features, and relations. For example, Table 2
indicates that each item in domain (3O,3AF) is characterized as a
system that includes three objects, each of which can have one
additive feature. Characterizing domain (3O,3AF) in this way
seems relatively natural, but note that other characterizations are
possible in principle. For example, feature F2 in Table 2 indicates
whether or not the second object in an item has spots, but this
feature could be replaced with 16 separate features, one for each of
the 16 spots. Each item could also be characterized as a system that
includes a single object—for example, each item could be an aerial
view of a single aquatic creature with head and tail submerged and
three square humps protruding above the surface of the water.

These alternative characterizations of domain (3O,3AF) may
seem relatively unnatural, but they serve to demonstrate that the
OQ model does not work directly with the physical stimuli pro-
vided to participants. Instead, the input needed by the model must
be supplied by psychological processes that detect the objects,
features, and relations that are present in a given stimulus. For
simple geometric stimuli like the examples in Table 2, the objects,
features, and relations are likely to be supplied by the visual
system, and the principles at work may include Gestalt grouping
principles. In other cases, however, conceptual knowledge may
play a role—for example, understanding that a whale has the
feature “breathes air” may depend on prior knowledge that whales
are mammals and that mammals breathe air.

Virtually every model of concept learning takes objects and either
features, relations or both as input, and questions about the origin of
these conceptual elements are raised by all of these models. One such
question, however, is especially relevant to this article, and concerns
the division of labor between the feature-detection system and the
concept learning system. The OQ model is motivated by the idea that
expressive representation languages are needed to explain how hu-
mans construct concepts that depend on quantification and relations.
An alternative approach might propose that the representation lan-
guage used for concept learning is very simple, but that representa-
tions in this language make use of emergent features including rela-
tional features and features that depend on quantification.2 For
example, consider the stimuli used for domain (3O,1AF) in Experi-
ment 1. If “has exactly one slash” and “has exactly three slashes” are
among the features available, then concept 10 in Table 4 can be
captured using a simple representation language such as Boolean
logic that does not incorporate quantification or counting. Supporters
of this view may wish to consider a variant of the OQ model where
language OQ is used to explain how emergent features are constructed
from simpler components, and where an existing feature-based ap-
proach such as propositional logic or a connectionist network is used
to explain how concepts are learned given these features. Note,
however, that language OQ still plays a critical role in this model, and
cannot be removed without substituting some alternative account of
how relational features and features that depend on quantification are
constructed.

2 I thank an anonymous reviewer for proposing this account.
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The Minimum Description Length Approach

As evaluated in this article, the OQ model focuses on the problem
of memorizing a set of positive and negative examples. The model,
however, can be viewed as a special case of the minimum description
length (MDL) approach to learning and inference (Grünwald, 2007),
and the literature on the MDL principle illustrates how the core ideas
behind the OQ model can be applied to a range of different problems.
This section explains how the MDL approach allows the OQ model
to be formulated in more general terms, and shows how this more
general formulation explains why concept learners sometimes acquire
rules that are longer than the shortest rule that correctly classifies the
observed examples.

Suppose that a learner observes a data set d and attempts to find
the shortest description of the data. I assume that this description
makes use of a rule r such that the total description length is

L�d|r� � L�r�, (3)

where L(r) is the description length of rule r and L(d|r) is the
description length of the data given rule r. The same idea can be
formulated using probability theory. If the description length L(x)
is equal to 
log(P(x)), which means that the description length of
an observation is inversely related to its probability, then the rule
that minimizes Equation 3 will be the same as the rule that
maximizes the posterior probability P(r|d) � P(d|r)P(r) (Grün-
wald, 2007). Although probabilistic inference and the MDL ap-
proach are equivalent for some purposes, the MDL approach is
especially natural when considering issues related to mental rep-
resentation, which is why this article focused on description
lengths L(r) rather than prior probabilities P(r).

For the canonical problem considered in this article, the data set
d consists of a set of stimuli s along with category labels c for each
stimulus. Equation 3 then becomes

L�c, s|r� � L�r� � L�c|s, r� � L�s|r� � L�r� (4)

� L�s|c, r� � L�c|r� � L�r�. (5)

Equations 4 and 5 are equivalent but Equation 4 is most useful
when thinking about the tasks considered in this article. For
example, consider the paradigm used in Experiment 1, where the
stimuli s include all items in the domain. Because the stimuli are
chosen in a way that does not depend on r, L(s|r) � L(s) � k1

where k1 is a constant that does not depend on r. L(c|s, r) � 0,
because rule r must perfectly classify the stimuli in s, which means
that the category labels c carry no new information given s and r.
As a result, the total description length is equal to k1 � L(r), and
this sum is minimized by choosing the shortest rule r that correctly
classifies all of the observed stimuli.

Although the analysis just described predicts that participants in
Experiment 1 will tend to learn the shortest rule that accounts for the
observed examples, the MDL approach predicts that people will learn
non-minimal rules in other contexts. Consider, for example, the prob-
lem of learning from positive examples (Chater & Vitanyi, 2007;
Conklin & Witten, 1994; Hsu & Chater, 2010; Tenenbaum & Grif-
fiths, 2001). Given positive examples only, the simplest consistent
rule always states that all items are examples of the concept, but in
many cases people infer a more specific rule. For example, suppose
that a learner observes four positive examples which are brown
squares of different sizes. It is possible that the underlying category

includes all squares, or all brown things, but the more intuitive
conclusion is that the category includes all brown squares.

The MDL approach predicts that whether or not people infer
minimal rules will depend on assumptions about how the stimuli
were sampled. Previous studies have explored different sampling
assumptions (Navarro, Dry, & Lee, 2012; Tenenbaum & Griffiths,
2001) and have provided some evidence that people’s inferences
are sensitive to these assumptions (Xu & Tenenbaum, 2007).
Equation 5 explains why people infer non-minimal rules when the
stimuli s are assumed to be drawn only from the set of positive
examples. If the stimuli are guaranteed to be positive examples,
then c will always include positive labels regardless of the under-
lying rule r. As a result, rule r is uninformative about c and
L(c|r) � L(c) � k2 where k2 is a constant that is independent of r.
The total description length in Equation 5 is therefore equal to
L(s|c, r) � k2 � L(r). In general, there will be a tradeoff between
the first and final terms in the sum. Consider again the example
where a learner observes four brown squares. If rule r1 indicates
that all members of the category are brown and square, then L(r1)
will be relatively high but L(s|c, r1) will be relatively low because
the description of s does not need to specify that each stimulus is
brown and square. On the other hand, if rule r2 specifies only that
members of the category are square, then L(r2) will be relatively
low but L(s|c, r2) will be relatively high because the description of
each stimulus will need to specify that it is brown. As this example
suggests, the tradeoff between L(s|c, r) and L(r) means that the rule
that minimizes the sum of the two will not always be the same as
the simplest rule that correctly classifies the observed examples.

A probabilistic approach equivalent to the MDL approach just
described has been used to model experiments where learners acquire
concepts from positive examples (Kemp et al., 2008a; Kemp & Jern,
2009a). Future studies can consider whether alternative sampling
assumptions will allow the MDL approach to account for other cases
where humans learn non-minimal rules (Medin, Wattenmaker, &
Michalski, 1987; Nosofsky, 1991; Nosofsky, Clark, & Shin, 1989).
For example, Medin et al. (1987) considered a task where participants
were shown positive and negative examples of a concept, and found
that participants often inferred non-minimal rules in this setting. The
MDL approach may be able to account for this result provided that the
stimuli s are assumed to be chosen in a way that depends on the
underlying rule. One possible assumption is that the stimuli were
sampled in a way that guarantees equal numbers of positive and
negative examples. Sampling stimuli in this way ensures that L(c|r) in
Equation 5 depends on r, which opens up the possibility that a rule can
minimize the total description length in Equation 5 even though it
does not minimize L(r).

Compositionality and Natural Language

This article is motivated in part by the idea that compositional
representation languages generate large sets of structures that can
be used to capture the meanings of natural language expressions
(Jackendoff, 1983; Larson & Segal, 1995; Montague, 1973). For
example, I suggested that the compositional nature of predicate
logic allows it to capture the meanings of natural language phrases
such as “brown square” and “armed robbery.” Predicate logic also
provides a promising way to capture the meanings of goal-derived
categories that are typically expressed using more complex phrases
such as “things to take on a camping trip” (Barsalou, 1983). Note,
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however, that this article has not provided a theory that can be used
to map natural language phrases into predicate logic structures.
Words can combine in many different ways, and developing a
general theory that picks out the predicate logic structure that
corresponds to a given phrase is a major challenge.

The literature on noun-noun combinations illustrates some of
the issues that arise when explaining how people interpret the
meanings of phrases (Costello & Keane, 2000; Hampton, 1997;
Murphy, 1990; Wisniewski, 1997). Some noun-noun combinations
appear to correspond to simple conjunctions. For example, “or-
phan girl” refers to any person who is an orphan and a girl. The
meaning of this phrase can therefore be captured by using a
conjunction to combine predicate logic structures that correspond
to “orphan” and “girl.” Many combinations, however, do not
correspond to conjunctions. For example, a “forest walk” is not a
forest that is also a walk, but rather a walk that takes place in a
forest. The theoretical approach developed in this article proposes
that the meanings of “orphan girl,” “forest walk,” and other
phrases can be captured using predicate logic, but the ways in
which predicate logic structures for individual words combine to
form structures for phrases may differ from case to case.

The considerations just described open up a research program
on conceptual combination that has been pursued by Costello and
Keane (2000) among others. These researchers have developed a
computational model of conceptual combination which uses pred-
icate logic to represent both the meanings of individual nouns and
the meanings of noun-noun compounds. The model takes predicate
logic structures for two nouns as input, and generates as output a
structure that captures the meaning of the corresponding noun-
noun compound. The model of Costello and Keane captures some
of the principles that humans use to interpret novel phrases, but
developing a fully general account of natural language interpreta-
tion is a long-term research challenge.

Process Models of Concept Learning

The OQ model is primarily intended to address the question of how
concepts are represented, and the core component of the model is
representation language OQ. Many researchers have pointed out,
however, that mental representations and mental processes cannot be
studied separately, and that every proposal about mental representa-
tion should be accompanied by a proposal about the processes that
operate over that representation (Anderson, 1978). This article has
relied on a simple hypothesis about mental processes— the hypothesis
that these processes are sensitive to the length of a description for-
mulated in a compositional language. Previous studies have applied
the same basic hypothesis to problems from a range of cognitive
domains, including language learning (Chater & Vitanyi, 2007;
Chomsky, 1975), visual perception (Chater, 1996; Leeuwenberg,
1971), sequence learning (Simon, 1972), similarity judgment (Hahn,
Chater, & Richardson, 2003), generalization (Chater & Vitanyi,
2003a), and concept learning (Feldman, 2000; Kemp et al., 2008a;
Medin et al., 1987; Pothos & Chater, 2002).

As mentioned earlier, the description length hypothesis is appealing
in part because it provides an idealized account of processing that
abstracts away most of the details. The hypothesis can therefore be
used as a simple initial strategy for evaluating claims about mental
representation. This article used the hypothesis to assess the psycho-
logical merits of four languages: OQ, FQ, OQ � FQ, and proposi-

tional logic. Given that the OQ model appears to account relatively
well for data from a broad range of domains, future research can
explore process models that combine the representational assumptions
of the OQ model with more detailed processing assumptions. Previ-
ous researchers have developed process models that help to explain
how propositional rules are learned and used (Bradmetz & Mathy,
2008; Fific et al., 2010; Fific, Nosofsky, & Townsend, 2008; Little,
Nosofsky, & Denton, 2011; Nosofsky, Palmeri, & McKinley, 1994),
and similar approaches may help to explain how representations in
language OQ are learned.

Developing process models that incorporate representations in
language OQ should help to overcome several limitations of the
current approach. The OQ model accounts relatively well for
average responses across participants, but is not designed to ac-
count for individual differences. The adjusted OQ model proposes
that participants may identify two kinds of rules: some participants
identify the simplest description of a set of examples, but others
rely on a rule that simply enumerates the examples observed. In
reality, however, there are more than two possible rules that might
be considered. The adjusted OQ model could be used as the
starting point for a richer process model which assumes that
participants select among multiple rules, where the probability of
choosing a given rule depends in part on its description length.
Previous rule-based approaches have been able to account for data
at the individual level (Goodman et al., 2008; Nosofsky, Palmeri,
& McKinley, 1994), and it should be possible to develop models
that combine language OQ with the processing assumptions of
previous rule-based approaches.

Appropriate processing assumptions may also allow the OQ model
to account for the graded nature of concepts. At first it may seem that
models that rely on rules have no way to account for typicality effects
and graded category membership. These phenomena, however, can be
captured by rule-based accounts that generate multiple rules for each
concept (Goodman et al., 2008). Borderline examples of the concept
may satisfy only one of the rules, but the most typical members of the
concept will satisfy all of the rules. Goodman et al. (2008) showed
that this general approach can be captured by working with probabil-
ity distributions over rules, and described a probabilistic rule-based
approach that is able to account for prototype and typicality effects.

A single set of processing assumptions is unlikely to account for all
of the ways in which rules are learned and used, and it may be
necessary to develop different process models for different contexts.
The OQ model can already explain to some extent why different rules
might be learned when the same concept is encountered in different
contexts. Consider, for instance, a problem where all members of a
concept have three distinctive features. The minimal rule for classi-
fying items as positive or negative examples of the concept might
incorporate just one of the three features. A different experimental
task, however, might require participants to make inferences about
unobserved features of category members (Yamauchi & Markman,
1998). Now the shortest adequate rule will need to include all three of
the distinctive features. As this example suggests, the description
length hypothesis predicts that learners will tend to construct the
simplest concept representation that is consistent with their goals and
the task constraints. Formalizing the goals and constraints, however,
will often require more detailed processing assumptions.

This section has described many directions in which the OQ model
can be extended. The core proposal of the model is that humans
construct rules in a compositional language like OQ. This proposal,
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however, is consistent with a large family of models, including
models that learn multiple rules for a given concept, models that learn
different rules depending on the context, and models that sample from
a probability distribution over rules. Researchers have explored all of
these directions using models that rely on propositional logic, and the
results in this article suggest that similar investigations using OQ as
the underlying representation language may be productive.

Conclusion

Psychological accounts of concept learning often focus on a
single domain or a handful of domains, but should ultimately aim
to explain how human learning operates across all of the domains
in the conceptual universe. This article has made a start in this
direction by providing a formal characterization of a large space of
domains and describing a computational model that promises to
explain how humans learn concepts across the entire space. The
model is founded on two key ideas: first, that humans make use of
a compositional representation language that allows them to con-
struct concepts within many different domains, and second, that
the psychological complexity of a concept is determined by the
length of its representation in this language.

The model was evaluated using data drawn from 11 different
domains, including domains considered by previous accounts of
Boolean concept learning and previously unstudied domains that
emphasize the role of quantification and relations. This collection
of 11 domains is relatively large by the standards of previous
research, but the conceptual universe contains a vast number of
additional domains and many different tasks can be formulated
within each of these domains. Exploring these domains and tasks
is a long-term challenge that may never be completed in full, but
the results generated at each step of the way seem likely to prove
informative about the nature of human learning.
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Appendix A

Counting Concept Types

This appendix describes a method for computing the number of
qualitatively different concepts that exist within a given domain.
The method is based on the approach that Shepard, Hovland, and
Jenkins (1961) used to derive the six concept types in domain
(1O,3SF) but is formulated in a way that can be applied to any
domain in the conceptual universe.

All of the domains in Table 2 are described using symbols for
objects (e.g., o1 and o2), features (F1 and F2), feature values (v1

and v2), and relations (R1 and R2). Some aspects of the mapping
between these symbols and the items in the domain are arbitrary.
In domain (1O,3SF), for example, choosing to label the size
feature F1 rather than F2 requires an arbitrary decision, and choos-
ing to label the feature value “small” as v1 rather than v2 requires
a second arbitrary decision. Any pair of extensions will be con-
sidered instances of the same type if they are identical up to
arbitrary decisions of this kind. More formally, any pair of exten-
sions belong to the same type if one can be converted into the other
by applying a structure-preserving transformation. The structure-
preserving transformations for domain (1O,3SF) are shown in the
top row of Table A1. For example, the set {F1, F2, F3} indicates
that permuting the feature labels does not change the basic struc-
ture of a concept. Allowing for the transformations shown in the
table reveals that each four-item extension in domain (1O,3SF)
corresponds to one of the six concept types shown in Figure 2b.

The remaining rows in Table A1 show structure-preserving
transformations that are appropriate for the remaining domains in
Table 2. In domain (3O,1SF), the only acceptable transformations
are those that permute the labels of the objects and the values of
the single feature F. Allowing for these transformations produces
the nine types shown in Figure 2c. In Figure 2c, type 5 could be
converted into type 6 by inverting the third binary variable so that
values 0 and 1, respectively, indicate that the third object has
values v2 and v1 for feature F. A transformation of this kind

explains why types 5 and 6 are equivalent within domain
(3O,3SF), but this transformation is no longer acceptable within
domain (3O,1SF). Because the same feature applies to all three
objects, feature values v1 and v2 cannot be exchanged for just one
of the objects in isolation. Instead, any transformation of this kind
must be applied to all three objects uniformly.

The final two columns in Table A1 show the number of types of
size four that emerge when the transformations listed in the table
are taken into account. The second-last column shows the number
of types when the symbols that indicate whether an item belongs
to a concept’s extension can be exchanged. In Experiment 1,
participants were asked to learn an extension of size 4 by sorting
eight items into a “blue group” of size four and a “red group” of
size four. Labeling the items that belong to the extension as red
rather than blue requires an arbitrary decision, and the basic
structure of a concept is therefore preserved by a transformation
that exchanges the roles of red and blue. If the two groups are
labeled as “blickets” and “non-blickets,” then these labels are no
longer exchangeable, because there is now a qualitative difference
between the extension of a concept and its complement. The final
column of Table A1 shows the number of concept types when the
labels for the extension and its complement cannot be exchanged.
In the three domains that are well-characterized by the SHJ types,
the final two columns are identical. In domain (3O,1SF), however,
the number of types increases from 9 to 12 if extensions and
complements cannot be exchanged. Note, for example, that type 2
in Figure 2c is qualitatively different from its complement. In
particular, type 2 includes both items where all three objects take
identical values for F, and its complement includes neither of these
items. Type 1, however, belongs to the same type as its comple-
ment, and exchanging the Boolean codes used in Figure 2c for v1

and v2 provides a way to transform one into the other.

Table A1
Number of Four-Item Types Within the Domains in Table 2

Domain Structure preserving transformations No. of types if {in, out} No. of types if {in}, {out}

1. (1O,3SF) {F1, F2, F3}, {v1, v2}, {v3, v4}, {v5, v6} 6 6
2. (1O,3AF) {F1, F2, F3} 10 20
3. (3O,3SF) {o1, o2, o3}, {F1, F2, F3}, {v1, v2}, {v3, v4}, {v5, v6} 6 6
4. (3O,3AF) {o1, o2, o3}, {F1, F2, F3} 10 20
5. (3O,1SF) {o1, o2, o3}, {v1, v2} 9 12
6. (3O,1AF) {o1, o2, o3} 10 20
7. (3O,3SR) {o1, o2, o3}, {R1, R2, R3}, {v1, v2}, {v3, v4}, {v5, v6} 6 6
8. (3O,1AR) {o1, o2, o3} 10 20
9. (3O,1AR) {o1, o2} 21 42

Note. One or more transformations are listed for each domain, and two concepts are instances of the same type if they are equivalent up to one or more
of these transformations. The transformations are represented as sets, and permuting the entities within any set is a valid transformation. The second-to-last
column shows the number of four-item types if exchanging the markers of concept membership (in and out) is a valid transformation. The final column
shows the number of four-item types if in and out cannot be exchanged.
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Domain (3O,1SF) in Table 2 is very similar to domain
(3O,1AF), and the only difference is whether the single feature in
the domain is substitutive or additive. Table A1 indicates, how-
ever, that this difference leads to different numbers of concept
types within the two domains. The 10 types of size four for domain
(3O,1AF) are shown in Figure 2d. The only difference between the
types in Figures 2c and 2d is that type 8 in Figure 2c is broken into
two types (8 and 9) in Figure 2d. In domain (3O,1SF), exchanging
the roles of v1 and v2 reveals that types 8 and 9 in Figure 2d are
equivalent. When the single feature is additive, however, no cor-
responding transformation is possible, because the absence of a
feature is qualitatively different from its presence. Of the eight
domains in Table 2, the four that include additive features or
relations each yield the 10 concept types shown in Figure 2d.

Although Shepard et al. (1961) pointed out that the concept types
within a given domain can be computed by identifying structure-
preserving transformations, their own work is not always consistent
with this insight. In their second experiment, they compared concept
learning across three domains that correspond to (1O,3SF), (3O,3SF),
and (3O,1SF) in Table 2. Table A1 suggests that the first two domains
both yield the six SHJ types, which means that it is sensible to
compare how these types are learned within these domains. Domain
(3O,1SF), however, is qualitatively different and includes nine types
rather than six. Shepard et al. did not acknowledge this difference and
considered the same SHJ types for all three domains in their experi-
ment. They concluded that all three domains lead to similar behavioral
results, but this conclusion deserves further examination. Figure 2c
suggests, for example, that SHJ type IV corresponds to two qualita-
tively different types in domain (3O,1SF). As mentioned earlier, type
5 in (3O,1SF) can be described as “items that include two or more
objects with value v2 on F,” but type 6 admits no similarly intuitive
description. Experiment 1 in this article did not consider (3O,1SF), but

the results for domain (3O,1AF) suggest that domain (3O,1SF) is
likely to lead to different patterns of learning than domains (1O,3SF)
and (3O,3SF).

Subsequent researchers have also failed to recognize that the
eight domains in Table 2 are not truly isomorphic. One relevant
study explored a version of domain (3O,1AR) where each item is
a miniature social network that includes three people and speci-
fies whether or not an undirected relation (e.g., friendship) exists
between each pair of people (Crockett, 1982). Table A1 suggests
that there are 10 types of size four in domain (3O,1AR), but the
study of Crockett (1982) takes the six SHJ types for granted. As
described in the main text, a careful characterization of the con-
ceptual universe undermines the conclusions that Crockett drew
from his results.

A second study carried out by social psychologists focuses on
a version of domain (3O,1AR) in Table 2 where two of the
objects are people, and the third is a social issue (Cottrell,
1975). For example, each network might indicate whether a
positive attitude exists between two individuals o1 and o2, and
whether these individuals view issue o3 in a positive light.
Cottrell (1975) has suggested that the six SHJ types capture all
concepts of size four that exist within the domain, but Table A1
provides a very different perspective. Row 8 suggests that
domain (3O,1AR) produces 10 distinct types when the labels of
the three objects can be permuted. When the first two objects
are people, and the third represents an issue, only the labels of
the first two objects can be permuted, and row 9 of the table
indicates that 21 types can be distinguished under these condi-
tions. Any study organized around the six SHJ types is therefore
unlikely to provide an adequate account of learning in this
domain.
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Appendix B

Computing Minimal Descriptions

Complexity values for all languages in this article were com-
puted by generating rules in order of increasing complexity until
rules for each concept of interest had been found. The generation
procedure for each language included an enumeration phase and a
combination phase. The enumeration phase generated a set of rules
according to criteria described in the next paragraph. Each rule has
an extension that specifies which items in the domain are consis-
tent with the rule. Given the extensions of all rules generated
during the enumeration phase, the combination phase considered
all possible ways to combine these extensions using conjunctions
or disjunctions. The procedure terminated once extensions corre-
sponding to all of the concepts under consideration had been
found. Although the number of possible rules grows rapidly as the
complexity of these rules increases, the number of extensions is
fixed and relatively small (28 for domains of size 8). The combi-
nation phase is tractable because rules with the same extension can
be grouped into a single equivalence class.

The enumeration phase varied according to the language under
consideration. When computing complexities with respect to prop-
ositional logic, the enumeration phase generated all rules that
correspond to a single literal. Because all literals were included
and all propositional rules can be constructed as combinations of
these literals, the complexity values for the propositional model are
exact.

When computing complexities for languages OQ, FQ, and
OQ � FQ, the enumeration phase considered all rules that had
at most m quantifiers and that had a complexity value less than
or equal to n. All analyses for Experiment 1 used m � 2 and n �
4. For example, the enumeration phase for OQ did not include
the rule ?x?y?z F�xFyFz (too many quantifiers) or the rule
@x?yFyFx � F�xF�y � GyGx (complexity too high). The
same values of m and n were used when computing complex-
ities for domain (6O � 1O) in Experiment 2, but m and n were
both set to 3 when computing complexities for domain (3O �
2O) in Experiment 2.

There are algorithms other than the one just described that
can be used to compute minimal descriptions with respect to
different languages. Several researchers have developed algo-
rithms for computing Boolean complexity (Lafond, Lacouture,
& Mineau, 2007; Mathy & Bradmetz, 2004; Vigo, 2006), and
researchers who work on inductive logic programming
(Muggleton & De Raedt, 1994) have developed general heuris-
tics for finding the shortest logical description of a data set. It
is possible that some of the same heuristics can be applied to the
languages considered in this article, but I am aware of no
previous attempts to compute minimal descriptions with respect
to languages like OQ.
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Appendix C

The Adjusted OQ Model

The OQ model accounts well for Feldman’s (2000) data set only if
adjusted to allow for two strategies that some participants may have
used. When asked to learn a concept where the positive examples
outnumber the negative examples, I assume that each participant will
choose to encode the negative examples with probability p. When
encoding a set of examples, I assume that with probability q, a
participant will rely on a brute force strategy rather than identifying
the shortest possible representation. If the brute force strategy is used,
then the description length corresponds to the number of examples
multiplied by the number of features possessed by each item. For any
concept where the negative examples outnumber the positive exam-
ples, the predicted complexity is therefore

�1 � p���1 � q�l� � qb�� � p��1 � q�l
 � qb
� (C1)

where l� and l
 are the minimum description lengths of the
positive and negative examples, and b� and b
 are the brute-force
description lengths of the positive and negative examples. To
avoid fitting numerical parameters, I set p � q � 0.5.

When participants are required to learn a concept where the
negative examples outnumber the positive examples, Equation C1
is altered to capture the assumption that all participants choose to
encode the positive examples. The predicted complexity is there-
fore

�1 � q�l� � qb�. (C2)

For most analyses in the article, the adjusted and unadjusted OQ
models produce identical correlations with the human data. As
described in the text, adjusting the OQ model is equivalent to
adding a constant to each minimal description length whenever all

concepts in a given family have the same size and the number of
positive examples is smaller than or equal to the number of
negative examples. Table C1 shows adjusted and unadjusted cor-
relations for all data sets other than Feldman’s (2000) data where
the two approaches lead to different results. The table shows that
the unadjusted and adjusted OQ models perform similarly in all
four cases. Overall, then, the unadjusted OQ model accounts
relatively well for all data sets except Feldman’s data set, and the
adjusted OQ model accounts well for all data sets considered.

Equations C1 and C2 can also be used to adjust the mental
models approach, but in this case, the description lengths l�, l
,
b�, and b
 should be computed by counting the number of
disjuncts rather than the number of literals. Results for the adjusted
mental models approach on Feldman’s (2000) data set are shown
in the caption of Figure 6.
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Table C1
Correlations Achieved by the Adjusted and Unadjusted
OQ Models

Domain Concept size Unadjusted Adjusted

(1O,2SF) 3/6 0.99 0.99
(1O,2SF) 4/5 0.90 0.91
(6O � 1O,1AR) 4/5 0.88 0.79
(3O � 2O,1AR) 4/5 0.85 0.86
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