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Abstract

Given one feature of a novel animal, humans readily make inferences about other
features of the animal. For example, winged creatures often fly, and creatures that
eat fish often live in the water. We explore the knowledge that supports these infer-
ences and compare two approaches. The first approach proposes that humans rely
on abstract representations of dependency relationships between features, and is
formalized here as a graphical model. The second approach proposes that humans
rely on specific knowledge of previously encountered animals, and is formalized
here as a family of exemplar models. We evaluate these models using a task where
participants reason about chimeras, or animals with pairs of features that have not
previously been observed to co-occur. The results support the hypothesis that hu-
mans rely on explicit representations of relationships between features.

Suppose that an eighteenth-century naturalist learns about a new kind of animal that has fur and a
duck’s bill. Even though the naturalist has never encountered an animal with this pair of features,
he should be able to make predictions about other features of the animal—for example, the animal
could well live in water but probably does not have feathers. Although the platypus exists in reality,
from a eighteenth-century perspective it qualifies as a chimera, or an animal that combines two or
more features that have not previously been observed to co-occur. Here we describe a probabilistic
account of inductive reasoning and use it to account for human inferences about chimeras.

The inductive problems we consider are special cases of the more general problem in Figure 1a
where a reasoner is given a partially observed matrix of animals by features then asked to infer the
values of the missing entries. This general problem has been previously studied and is addressed
by computational models of property induction, categorization, and generalization [1–7]. A chal-
lenge faced by all of these models is to capture the background knowledge that guides inductive
inferences. Some accounts rely on similarity relationships between animals [6, 8], others rely on
causal relationships between features [9, 10], and others incorporate relationships between animals
and relationships between features [11]. We will evaluate graphical models that capture both kinds
of relationships (Figure 1a), but will focus in particular on relationships between features.

Psychologists have previously suggested that humans rely on explicit mental representations of re-
lationships between features [12–16]. Often these representations are described as theories—for
example, theories that specify a causal relationship between having wings and flying, or living in
the sea and eating fish. Relationships between features may take several forms: for example, one
feature may cause, enable, prevent, be inconsistent with, or be a special case of another feature. For
simplicity, we will treat all of these relationships as instances of dependency relationships between
features, and will capture them using an undirected graphical model.

Previous studies have used graphical models to account for human inferences about features but
typically these studies consider toy problems involving a handful of novel features such as “has
gene X14” or “has enzyme Y132” [9, 11]. Participants might be told, for example, that gene X14
leads to the production of enzyme Y132, then asked to use this information when reasoning about
novel animals. Here we explore whether a graphical model approach can account for inferences
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Figure 1: Inductive reasoning about animals and features. (a) Inferences about the features of a
new animal onew that flies may draw on similarity relationships between animals (the new animal is
similar to sparrows and robins but not hippos and rhinos), and on dependency relationships between
features (flying and having wings are linked). (b) A graph product produced by combining the two
graph structures in (a).

about familiar features. Working with familiar features raises a methodological challenge since
participants have a substantial amount of knowledge about these features and can reason about them
in multiple ways. Suppose, for example, that you learn that a novel animal can fly (Figure 1a). To
conclude that the animal probably has wings, you might consult a mental representation similar to
the graph at the top of Figure 1a that specifies a dependency relationship between flying and having
wings. On the other hand, you might reach the same conclusion by thinking about flying creatures
that you have previously encountered (e.g. sparrows and robins) and noticing that these creatures
have wings. Since the same conclusion can be reached in two different ways, judgments about
arguments of this kind provide little evidence about the mental representations involved.

The challenge of working with familiar features directly motivates our focus on chimeras. Inferences
about chimeras draw on rich background knowledge but require the reasoner to go beyond past
experience in a fundamental way. For example, if you learn that an animal flies and has no legs, you
cannot make predictions about the animal by thinking of flying, no-legged creatures that you have
previously encountered. You may, however, still be able to infer that the novel animal has wings
if you understand the relationship between flying and having wings. We propose that graphical
models over features can help to explain how humans make inferences of this kind, and evaluate our
approach by comparing it to a family of exemplar models. The next section introduces these models,
and we then describe two experiments designed to distinguish between the models.

1 Reasoning about objects and features

Our models make use of a binary matrix D where the rows {o1, . . . , o129} correspond to objects,
and the columns {f1, . . . , f56} correspond to features. A subset of the objects is shown in Figure 2a,
and the full set of features is shown in Figure 2b and its caption. Matrix D was extracted from the
Leuven natural concept database [17], which includes 129 animals and 757 features in total. We
chose a subset of these features that includes a mix of perceptual and behavioral features, and that
includes many pairs of features that depend on each other. For example, animals that “live in water”
typically “can swim,” and animals that have “no legs” cannot “jump far.”

Matrix D can be used to formulate problems where a reasoner observes one or two features of a
new object (i.e. animal o130) and must make inferences about the remaining features of the animal.
The next two sections describe graphical models that can be used to address this problem. The
first graphical model O captures relationships between objects, and the second model F captures
relationships between features. We then discuss how these models can be combined, and introduce
a family of exemplar-style models that will be compared with our graphical models.

A graphical model over objects

Many accounts of inductive reasoning focus on similarity relationships between objects [6, 8]. Here
we describe a tree-structured graphical model O that captures these relationships. The tree was
constructed from matrix D using average linkage clustering and the Jaccard similarity measure, and
part of the resulting structure is shown in Figure 2a. The subtree in Figure 2a includes clusters

2



heavy

the sea
lives in
water

eats
fish

lives
in the
desert

lives
in the
woods

lives
underground

lives
in trees

can climb
well

has six
legs

has two
legs

has four
legs

can be
ridden

has sharp
teeth

has no
legs

has
feathers

has scales

a
lli

g
a

to
r

c
a

im
a

n
c
ro

c
o

d
ile

m
o

n
it
o

r 
liz

a
rd

d
in

o
s
a

u
r

b
lin

d
w

o
rm

b
o

a
c
o

b
ra

p
y
th

o
n

s
n

a
k
e

v
ip

e
r

c
h

a
m

e
le

o
n

ig
u

a
n

a
g

e
c
k
o

liz
a

rd
s
a

la
m

a
n

d
e

r
fr

o
g

to
a

d
to

rt
o

is
e

tu
rt

le
a

n
c
h

o
v
y

h
e

rr
in

g
s
a

rd
in

e
c
o

d
s
o

le
s
a

lm
o

n
tr

o
u

t
c
a

rp
p

ik
e

s
ti
c
k
le

b
a

c
k

e
e

l
fl
a

tf
is

h
ra

y
p

la
ic

e
p

ir
a

n
h

a
s
p

e
rm

 w
h

a
le

s
q

u
id

s
w

o
rd

fi
s
h

g
o

ld
fi
s
h

d
o

lp
h

in
o

rc
a

w
h

a
le

s
h

a
rk

b
a

t
fo

x
w

o
lf

b
e

a
v
e

r
h

e
d

g
e

h
o

g
h

a
m

s
te

r
s
q

u
ir
re

l
m

o
u

s
e

ra
b

b
it

b
is

o
n

e
le

p
h

a
n

t
h

ip
p

o
p

o
ta

m
u

s
rh

in
o

c
e

ro
s

lio
n

ti
g

e
r

p
o

la
r 

b
e

a
r

d
e

e
r

d
ro

m
e

d
a

ry
lla

m
a

g
ir
a

ff
e

z
e

b
ra

k
a

n
g

a
ro

o
m

o
n

k
e

y
c
a

t
d

o
g

c
o

w
h

o
rs

e
d

o
n

k
e

y
p

ig
s
h

e
e

p

(a)

(b)
can swim has gills

can fly

has wings

eats grain

eats nuts

eats grass

eats berries

crawls
far

strong predator

can jump

has mane

has fur

nocturnal

can see
in dark

slow
lives in

Figure 2: Graph structures used to define graphical models O and F . (a) A tree that captures
similarity relationships between animals. The full tree includes 129 animals, and only part of the
tree is shown here. The grey points along the branches indicate locations where a novel animal o130

could be attached to the tree. (b) A network capturing pairwise dependency relationships between
features. The edges capture both positive and negative dependencies. All edges in the network are
shown, and the network also includes 20 isolated nodes for the following features: is black, is blue,
is green, is grey, is pink, is red, is white, is yellow, is a pet, has a beak, stings, stinks, has a long neck,
has feelers, sucks blood, lays eggs, makes a web, has a hump, has a trunk, and is cold-blooded.

corresponding to amphibians and reptiles, aquatic creatures, and land mammals, and the subtree
omitted for space includes clusters for insects and birds.

We assume that the features in matrix D (i.e. the columns) are generated independently over O:

P (D|O, π, λ) =
∏

i

P (f i|O, πi, λi).

The distribution P (f i|O, πi, λi) is based on the intuition that nearby nodes in O tend to have the
same value of f i. Previous researchers [8, 18] have used a directed graphical model where the
distribution at the root node is based on the baserate πi, and any other node v with parent u has the
following conditional probability distribution:

P (v = 1|u) =

{

πi + (1 − πi)e−λil, if u = 1

πi − πie−λil, if u = 0
(1)

where l is the length of the branch joining node u to node v. The variability parameter λi captures the
extent to which feature f i is expected to vary over the tree. Note, for example, that any node v must
take the same value as its parent u when λ = 0. To avoid free parameters, the feature baserates πi

and variability parameters λi are set to their maximum likelihood values given the observed values
of the features {f i} in the data matrix D. The conditional distributions in Equation 1 induce a joint
distribution over all of the nodes in graph O, and the distribution P (f i|O, πi, λi) is computed by
marginalizing out the values of the internal nodes. Although we described O as a directed graphical
model, the model can be converted into an equivalent undirected model with a potential for each
edge in the tree and a potential for the root node. Here we use the undirected version of the model,
which is a natural counterpart to the undirected model F described in the next section.

The full version of structure O in Figure 2a includes 129 familiar animals, and our task requires
inferences about a novel animal o130 that must be slotted into the structure. Let D′ be an expanded
version of D that includes a row for o130, and let O′ be an expanded version of O that includes a
node for o130. The edges in Figure 2a are marked with evenly spaced gray points, and we use a
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uniform prior P (O′) over all trees that can be created by attaching o130 to one of these points. Some
of these trees have identical topologies, since some edges in Figure 2a have multiple gray points.
Predictions about o130 can be computed using:

P (D′|D) =
∑

O′

P (D′|O′,D)P (O′|D) ∝
∑

O′

P (D′|O′,D)P (D|O′)P (O′). (2)

Equation 2 captures the basic intuition that the distribution of features for o130 is expected to be
consistent with the distribution observed for previous animals. For example, if o130 is known to
fly then the trees with high posterior probability P (O′|D) will be those where o130 is near other
flying creatures (Figure 1a), and since these creatures have wings Equation 2 predicts that o130

probably also has wings. As this example suggests, model O captures dependency relationships
between features implicitly, and therefore stands in contrast to models like F that rely on explicit
representations of relationships between features.

A graphical model over features

Model F is an undirected graphical model defined over features. The graph shown in Figure 2b was
created by identifying pairs where one feature depends directly on another. The author and a research
assistant both independently identified candidate sets of pairwise dependencies, and Figure 2b was
created by merging these sets and reaching agreement about how to handle any discrepancies.

As previous researchers have suggested [13, 15], feature dependencies can capture several kinds of
relationships. For example, wings enable flying, living in the sea leads to eating fish, and having
no legs rules out jumping far. We work with an undirected graph because some pairs of features
depend on each other but there is no clear direction of causal influence. For example, there is clearly
a dependency relationship between being nocturnal and seeing in the dark, but no obvious sense in
which one of these features causes the other.

We assume that the rows of the object-feature matrix D are generated independently from an undi-
rected graphical model F defined over the feature structure in Figure 2b:

P (D|F) =
∏

i

P (oi|F).

Model F includes potential functions for each node and for each edge in the graph. These potentials
were learned from matrix D using the UGM toolbox for undirected graphical models [19]. The
learned potentials capture both positive and negative relationships: for example, animals that live in
the sea tend to eat fish, and tend not to eat berries. Some pairs of feature values never occur together
in matrix D (there are no creatures that fly but do not have wings). We therefore chose to compute
maximum a posteriori values of the potential functions rather than maximum likelihood values, and
used a diffuse Gaussian prior with a variance of 100 on the entries in each potential.

After learning the potentials for model F , we can make predictions about a new object o130 using
the distribution P (o130|F). For example, if o130 is known to fly (Figure 1a), model F predicts
that o130 probably has wings because the learned potentials capture a positive dependency between
flying and having wings.

Combining object and feature relationships

There are two simple ways to combine models O and F in order to develop an approach that incorpo-
rates both relationships between features and relationships between objects. The output combination
model computes the predictions of both models in isolation, then combines these predictions using
a weighted sum. The resulting model is similar to a mixture-of-experts model, and to avoid free
parameters we use a mixing weight of 0.5. The structure combination model combines the graph
structures used by the two models and relies on a set of potentials defined over the resulting graph
product. An example of a graph product is shown in Figure 1b, and the potential functions for this
graph are inherited from the component models in the natural way. Kemp et al. [11] use a similar
approach to combine a functional causal model with an object model O, but note that our structure
combination model uses an undirected model F rather than a functional causal model over features.

Both combination models capture the intuition that inductive inferences rely on relationships be-
tween features and relationships between objects. The output combination model has the virtue of
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simplicity, and the structure combination model is appealing because it relies on a single integrated
representation that captures both relationships between features and relationships between objects.
To preview our results, our data suggest that the combination models perform better overall than
either O or F in isolation, and that both combination models perform about equally well.

Exemplar models

We will compare the family of graphical models already described with a family of exemplar models.
The key difference between these model families is that the exemplar models do not rely on explicit
representations of relationships between objects and relationships between features. Comparing the
model families can therefore help to establish whether human inferences rely on representations of
this sort.

Consider first a problem where a reasoner must predict whether object o130 has feature k after ob-
serving that it has feature i. An exemplar model addresses the problem by retrieving all previously-
observed objects with feature i and computing the proportion that have feature k:

P (ok = 1|oi = 1) =
|fk & f i|

|f i|
(3)

where |fk| is the number of objects in matrix D that have feature k, and |fk &f i| is the number that
have both feature k and feature i. Note that we have streamlined our notation by using ok instead of
o130

k to refer to the kth feature value for object o130.

Suppose now that the reasoner observes that object o130 has features i and j. The natural general-
ization of Equation 3 is:

P (ok = 1|oi = 1, oj = 1) =
|fk & f i & f j |

|f i & f j |
(4)

Because we focus on chimeras, |f i & f j | = 0 and Equation 4 is not well defined. We therefore
evaluate an exemplar model that computes predictions for the two observed features separately then
computes the weighted sum of these predictions:

P (ok = 1|oi = 1, oj = 1) = wi |f
k & f i|

|f i|
+ wj |f

k & f j |

|f j |
. (5)

where the weights wi and wj must sum to one. We consider four ways in which the weights could
be set. The first strategy sets wi = wj = 0.5. The second strategy sets wi ∝ |f i|, and is consistent
with an approach where the reasoner retrieves all exemplars in D that are most similar to the novel
animal and reports the proportion of these exemplars that have feature k. The third strategy sets
wi ∝ 1

|fi| , and captures the idea that features should be weighted by their distinctiveness [20]. The

final strategy sets weights according to the coherence of each feature [21]. A feature is coherent if
objects with that feature tend to resemble each other overall, and we define the coherence of feature
i as the expected Jaccard similarity between two randomly chosen objects from matrix D that both
have feature i. Note that the final three strategies are all consistent with previous proposals from the
psychological literature, and each one might be expected to perform well.

Because exemplar models and prototype models are often compared, it is natural to consider a pro-
totype model [22] as an additional baseline. A standard prototype model would partition the 129
animals into categories and would use summary statistics for these categories to make predictions
about the novel animal o130. We will not evaluate this model because it corresponds to a coarser ver-
sion of model O, which organizes the animals into a hierarchy of categories. The key characteristic
shared by both models is that they explicitly capture relationships between objects but not features.

2 Experiment 1: Chimeras

Our first experiment explores how people make inferences about chimeras, or novel animals with
features that have not previously been observed to co-occur. Inferences about chimeras raise chal-
lenges for exemplar models, and therefore help to establish whether humans rely on explicit rep-
resentations of relationships between features. Each argument can be represented as f i, f j → fk
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Figure 3: Argument ratings for Experiment 1 plotted against the predictions of six models. The
y-axis in each panel shows human ratings on a seven point scale, and the x-axis shows probabilities
according to one of the models. Correlation coefficients are shown for each plot.

where f i and fk are the premises (e.g. “has no legs” and “can fly”) and fk is the conclusion (e.g.
“has wings”). We are especially interested in conflict cases where the premises f i and f j lead to
opposite conclusions when taken individually: for example, most animals with no legs do not have
wings, but most animals that fly do have wings. Our models that incorporate feature structure F can
resolve this conflict since F includes a dependency between “wings” and “can fly” but not between
“wings” and “has no legs.” Our models that do not include F cannot resolve the conflict and predict
that humans will be uncertain about whether the novel animal has wings.

Materials. The object-feature matrix D includes 447 feature pairs {f i, f j} such that none of the
129 animals has both f i and f j . We selected 40 pairs (see the supporting material) and created
400 arguments in total by choosing 10 conclusion features for each pair. The arguments can be
assigned to three categories. Conflict cases are arguments f i, f j → fk such that the single-premise
arguments f i → fk and f j → fk lead to incompatible predictions. For our purposes, two single-
premise arguments with the same conclusion are deemed incompatible if one leads to a probability
greater than 0.9 according to Equation 3, and the other leads to a probability less than 0.1. Edge cases
are arguments f i, f j → fk such that the feature network in Figure 2b includes an edge between fk

and either f i or f j . Note that some arguments are both conflict cases and edge cases. All arguments
that do not fall into either one of these categories will be referred to as other cases.

The 400 arguments for the experiment include 154 conflict cases, 153 edge cases, and 120 other
cases. 34 arguments are both conflict cases and edge cases. We chose these arguments based on
three criteria. First, we avoided premise pairs that did not co-occur in matrix D but that co-occur in
familiar animals that do not belong to D. For example, “is pink” and “has wings” do not co-occur in
D but “flamingo” is a familiar animal that has both features. Second, we avoided premise pairs that
specified two different numbers of legs—for example, {“has four legs,” “has six legs”}. Finally, we
aimed to include roughly equal numbers of conflict cases, edge cases, and other cases.

Method. 16 undergraduates participated for course credit. The experiment was carried out using a
custom-built computer interface, and one argument was presented on screen at a time. Participants
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rated the probability of the conclusion on seven point scale where the endpoints were labeled “very
unlikely” and “very likely.” The ten arguments for each pair of premises were presented in a block,
but the order of these blocks and the order of the arguments within these blocks were randomized
across participants.

Results. Figure 3 shows average human judgments plotted against the predictions of six models.
The plots in the first row include all 400 arguments in the experiment, and the remaining rows show
results for conflict cases, edge cases, and other cases. The previous section described four exemplar
models, and the two shown in Figure 3 are the best performers overall. Even though the graphical
models include more numerical parameters than the exemplar models, recall that these parameters
are learned from matrix D rather than fit to the experimental data. Matrix D also serves as the basis
for the exemplar models, which means that all of the models can be compared on equal terms.

The first row of Figure 3 suggests that the three models which include feature structure F perform
better than the alternatives. The output combination model is the worst of the three models that in-
corporate F , and the correlation achieved by this model is significantly greater than the correlation
achieved by the best exemplar model (p < 0.001, using the Fisher transformation to convert correla-
tion coefficients to z scores). Our data therefore suggest that explicit representations of relationships
between features are needed to account for inductive inferences about chimeras. The model that
includes the feature structure F alone performs better than the two models that combine F with the
object structure O, which may not be surprising since Experiment 1 focuses specifically on novel
animals that do not slot naturally into structure O.

Rows two through four suggest that the conflict arguments in particular raise challenges for the
models which do not include feature structure F . Since these conflict cases are arguments f i, f j →
fk where f i → fk has strength greater than 0.9 and f j → fk has strength less than 0.1, the
first exemplar model averages these strengths and assigns an overall strength of around 0.5 to each
argument. The second exemplar model is better able to differentiate between the conflict arguments,
but still performs substantially worse than the three models that include structure F . The exemplar
models perform better on the edge arguments, but are outperformed by the models that include F .
Finally, all models achieve roughly the same level of performance on the other arguments.

Although the feature model F performs best overall, the predictions of this model still leave room for
improvement. The two most obvious outliers in the third plot in the top row represent the arguments
{is blue, lives in desert → lives in woods} and {is pink, lives in desert → lives in woods}. Our
participants sensibly infer that any animal which lives in the desert cannot simultaneously live in
the woods. In contrast, the Leuven database indicates that eight of the twelve animals that live in
the desert also live in the woods, and the edge in Figure 2b between “lives in the desert” and “lives
in the woods” therefore represents a positive dependency relationship according to model F . This
discrepancy between model and participants reflects the fact that participants made inferences about
individual animals but the Leuven database is based on features of animal categories. Note, for
example, that any individual animal is unlikely to live in the desert and the woods, but that some
animal categories (including snakes, salamanders, and lizards) are found in both environments.

3 Experiment 2: Single-premise arguments

Our results so far suggest that inferences about chimeras rely on explicit representations of relation-
ships between features but provide no evidence that relationships between objects are important. It
would be a mistake, however, to conclude that relationships between objects play no role in induc-
tive reasoning. Previous studies have used object structures like the example in Figure 2a to account
for inferences about novel features [11]—for example, given that alligators have enzyme Y132 in
their blood, it seems likely that crocodiles also have this enzyme. Inferences about novel objects can
also draw on relationships between objects rather than relationships between features. For example,
given that a novel animal has a beak you will probably predict that it has feathers, not because there
is any direct dependency between these two features, but because the beaked animals that you know
tend to have feathers. Our second experiment explores inferences of this kind.

Materials and Method. 32 undergraduates participated for course credit. The task was identical
to Experiment 1 with the following exceptions. Each two-premise argument f i, f j → fk from
Experiment 1 was converted into two one-premise arguments f i → fk and f j → fk, and these
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Figure 4: Argument ratings and model predictions for Experiment 2.

one-premise arguments were randomly assigned to two sets. 16 participants rated the 400 arguments
in the first set, and the other 16 rated the 400 arguments in the second set.

Results. Figure 4 shows average human ratings for the 800 arguments plotted against the predictions
of five models. Unlike Figure 3, Figure 4 includes a single exemplar model since there is no need
to consider different feature weightings in this case. Unlike Experiment 1, the feature model F
performs worse than the other alternatives (p < 0.001 in all cases). Not surprisingly, this model
performs relatively well for edge cases f j → fk where f j and fk are linked in Figure 2b, but the
final row shows that the model performs poorly across the remaining set of arguments.

Taken together, Experiments 1 and 2 suggest that relationships between objects and relationships
between features are both needed to account for human inferences. Experiment 1 rules out an
exemplar approach but models that combine graph structures over objects and features perform
relatively well in both experiments. We considered two methods for combining these structures and
both performed equally well. Combining the knowledge captured by these structures appears to be
important, and future studies can explore in detail how humans achieve this combination.

4 Conclusion

This paper proposed that graphical models are useful for capturing knowledge about animals and
their features and showed that a graphical model over features can account for human inferences
about chimeras. A family of exemplar models and a graphical model defined over objects were
unable to account for our data, which suggests that humans rely on mental representations that
explicitly capture dependency relationships between features. Psychologists have previously used
graphical models to capture relationships between features, but our work is the first to focus on
chimeras and to explore models defined over a large set of familiar features.

Although a simple undirected model accounted relatively well for our data, this model is only a
starting point. The model incorporates dependency relationships between features, but people know
about many specific kinds of dependencies, including cases where one feature causes, enables, pre-
vents, or is inconsistent with another. An undirected graph with only one class of edges cannot
capture this knowledge in full, and richer representations will ultimately be needed in order to pro-
vide a more complete account of human reasoning.
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