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Abstract

Learning to understand a single causal system can be an achievement, but humans must learn

about multiple causal systems over the course of a lifetime. We present a hierarchical Bayesian

framework that helps to explain how learning about several causal systems can accelerate learning

about systems that are subsequently encountered. Given experience with a set of objects, our frame-

work learns a causal model for each object and a causal schema that captures commonalities among

these causal models. The schema organizes the objects into categories and specifies the causal pow-

ers and characteristic features of these categories and the characteristic causal interactions between

categories. A schema of this kind allows causal models for subsequent objects to be rapidly learned,

and we explore this accelerated learning in four experiments. Our results confirm that humans learn

rapidly about the causal powers of novel objects, and we show that our framework accounts better

for our data than alternative models of causal learning.

Keywords: Causal learning; Learning to learn; Learning inductive constraints; Transfer learning;

Categorization; Hierarchical Bayesian models

1. Learning to learn causal models

Children face a seemingly endless stream of inductive learning tasks over the course of

their cognitive development. By the age of 18, the average child will have learned the mean-

ings of 60,000 words, the three-dimensional shapes of thousands of objects, the standards of

behavior that are appropriate for a multitude of social settings, and the causal structures

underlying numerous physical, biological, and psychological systems. Achievements like
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these are made possible by the fact that inductive tasks fall naturally into families of related

problems. Children who have faced several inference problems from the same family may

discover not only the solution to each individual problem but also something more general

that facilitates rapid inferences about subsequent problems from the same family. For exam-

ple, a child may require extensive time and exposure to learn her first few names for objects,

but learning a few dozen object names may allow her to learn subsequent names much more

quickly (Bloom, 2000; Smith, Jones, Landau, Gershkoff-Stowe, & Samuelson, 2002).

Psychologists and machine learning researchers have both studied settings where learners

face multiple inductive problems from the same family, and they have noted that learning

can be accelerated by discovering and exploiting common elements across problems. We

will refer to this ability as ‘‘learning to learn’’ (Harlow, 1949; Yerkes, 1943), although it is

also addressed by studies that focus on ‘‘transfer learning,’’ ‘‘multitask learning,’’ ‘‘lifelong

learning,’’ and ‘‘learning sets’’ (Caruana, 1997; Stevenson, 1972; Thorndike & Woodworth,

1901; Thrun, 1998; Thrun & Pratt, 1998). This paper provides a computational account

of learning to learn that focuses on the acquisition and use of inductive constraints. After

experiencing several learning problems from a given family, a learner may be able to induce

a schema, or a set of constraints that captures the structure of all problems in the family.

These constraints may then allow the learner to solve subsequent problems given just a

handful of relevant observations.

The problem of learning to learn is relevant to many areas of cognition, including word

learning, visual learning, and social learning, but we focus here on causal learning and

explore how people learn and use inductive constraints that apply to multiple causal sys-

tems. A door, for example, is a simple causal system, and experience with several doors

may allow a child to rapidly construct causal models for new doors that she encounters. A

computer program is a more complicated causal system, and experience with several pieces

of software may allow a user to quickly construct causal models for new programs that she

encounters. Here we consider settings where a learner is exposed to a family of objects and

learns causal models that capture the causal powers of these objects. For example, a learner

may implicitly track the effects of eating different foods and may construct a causal model

for each food that indicates whether it tends to produce indigestion, allergic reactions, or

other kinds of problems. After experience with several foods, a learner may develop a

schema (Kelley, 1972) that organizes these foods into categories (e.g., citrus fruits) and

specifies the causal powers and characteristic features of each category (e.g., citrus fruits

cause indigestion and have crescent-shaped segments). A schema of this kind should allow

a learner to rapidly infer the causal powers of novel objects: for example, observing that a

novel fruit has crescent-shaped segments might be enough to conclude that it causes indiges-

tion.

There are three primary reasons why causal reasoning provides a natural setting for

exploring how people learn and use inductive constraints. First, abstract inductive con-

straints play a crucial role in causal learning. Some approaches to causal learning focus on

bottom-up statistical methods, including methods that track patterns of conditional indepen-

dence or partial correlations (Glymour, 2001; Pearl, 2000). These approaches, however, offer

at best a limited account of human learning. Settings where humans observe correlational
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data without the benefit of strong background knowledge often lead to weak learning even

when large amounts of training data are provided (Lagnado & Sloman, 2004; Steyvers,

Tenenbaum, Wagenmakers, & Blum, 2003). In contrast, both adults and children can infer

causal connections from observing just one or a few events of the right type (Gopnik &

Sobel, 2000; Schulz & Gopnik, 2004)—far fewer observations than would be required to

compute reliable measures of correlation or independence. Top-down, knowledge-based

accounts provide the most compelling accounts of this mode of causal learning (Griffiths &

Tenenbaum, 2007).

Second, some causal constraints are almost certainly learned, and constraint learning

probably plays a more prominent role in causal reasoning than in other areas of cognition,

such as language and vision. Fundamental aspects of language and vision do not change

much from one generation to another, let alone over the course of an individual’s life. It is

therefore possible that the core inductive constraints guiding learning in language and vision

are part of the innate cognitive machinery rather than being themselves learned (Bloom,

2000; Spelke, 1994). In contrast, cultural innovation never ceases to present us with new

families of causal systems, and the acquisition of abstract causal knowledge continues over

the life span. Consider, for example, a 40-year-old who is learning to use a cellular phone

for the first time. It may take him a while to master the first phone that he owns, but by the

end of this process—and certainly after experience with several different cell phones—he is

likely to have acquired abstract knowledge that will allow him to adapt to subsequent

phones rapidly and with ease.

The third reason for our focus on causal learning is methodological, and it derives from

the fact that learning to learn in a causal setting can be studied in adults and children alike.

Even if we are ultimately interested in the origins of abstract knowledge in childhood,

studying analogous learning phenomena in adults may provide the greatest leverage for

developing computational models, at least at the start of the enterprise. Adult participants in

behavioral experiments can provide rich quantitative judgments that can be compared with

model predictions in ways that are not possible with standard developmental methods. The

empirical section of this paper therefore focuses on adult experiments. We discuss the deve-

lopmental implications of our approach in some detail, but a full evaluation of our approach

as a developmental model is left for future work.

To explain how abstract causal knowledge can both constrain learning of specific causal

relations and can itself be learned from data, we work within a hierarchical Bayesian frame-

work (Kemp, 2008; Tenenbaum, Griffiths, & Kemp, 2006). Hierarchical Bayesian models

include representations at several levels of abstraction, where the representation at each

level captures knowledge that supports learning at the next level down (Griffiths &

Tenenbaum, 2007; Kemp, Perfors, & Tenenbaum, 2007; Kemp & Tenenbaum, 2008).

Statistical inference over these hierarchies helps to explain how the representations at each

level are learned. Our model can be summarized as a three-level framework where the top

level specifies a causal schema, the middle level specifies causal models for individual

objects, and the bottom level specifies observable data. If the schema at the top level is

securely established, then the framework helps to explain how abstract causal knowledge

supports the construction of causal models for novel objects. If the schema at the upper level
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is not yet established, then the framework helps to explain how causal models can be

learned primarily from observable data. Note, however, that top-down learning and bottom-

up learning are just two of the possibilities that emerge from our hierarchical approach. In

the most general case, a learner will be uncertain about the information at all three levels,

and will have to simultaneously learn a schema (inference at the top level) and a set of

causal models (inference at the middle level) and make predictions about future obser-

vations (inference at the bottom level).

Several aspects of our approach draw on previous psychological research. Cognitive

psychologists have discussed how abstract causal knowledge (Lien & Cheng, 2000; Shanks

& Darby, 1998) might be acquired, and they have studied the bidirectional relationship

between categorization and causal reasoning (Lien & Cheng, 2000; Waldmann & Hagmayer,

2006). Previous models of categorization have used Bayesian methods to explain how people

organize objects into categories based on their features (Anderson, 1991) or their relation-

ships with other objects (Kemp, Tenenbaum, Griffiths, Yamada, & Ueda, 2006), although not

in a causal context. In parallel, Bayesian models of knowledge-based causal learning have

often assumed a representation in terms of object categories, but they have not attempted to

learn these categories (Griffiths & Tenenbaum, 2007). Here we bring together all of these

ideas and explore how causal learning unfolds simultaneously across multiple levels of

abstraction. In particular, we show how learners can simultaneously make inferences about

causal categories, causal relationships, causal events, and perceptual features.

2. Learning causal schemata

Later sections will describe our framework in full detail, but this section provides an

informal introduction to our general approach. As a running example we consider the

problem of learning about drugs and their side-effects: for instance, learning whether

blood-pressure medications cause headaches. This problem requires inferences about two

domains—people and drugs—and can be formulated as a domain-level problem:

ingestsðperson; drugÞ!? headacheðpersonÞ ð1Þ

The domain-level problem in Eqn. 1 sets up an object-level problem for each combination

of a person and a drug. For example,

ingestsðAlice; DoxazosinÞ!? headacheðAliceÞ ð2Þ

represents the problem of deciding whether there is a causal relationship between Alice tak-

ing Doxazosin and Alice developing a headache, and

ingestsðBob; PrazosinÞ!? headacheðBobÞ ð3Þ

represents a second problem concerning the effect of Prazosin on Bob. Our goal is to learn

an object-level causal model for each object-level problem. In Fig. 1A there are six people
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Fig. 1. Three settings where causal schemata can be learned. (A) The drugs and headaches example. The people

are organized into two categories and the drugs are organized into three categories. The category-level causal

models indicate that alpha blockers cause headaches in A-people and beta blockers cause headaches in B-people.

There are 54 object-level causal models in total, one for each combination of a person and a drug, and three of

these models are shown. The first indicates that Doxazosin often gives Alice headaches. The event data for learn-

ing these causal models are shown at the bottom level: Alice has taken Doxazosin 10 times and experienced a

headache on seven of these occasions. (B) The allergy example. The schema organizes plants and people into

two categories each, and the object-level models and event data are not shown. (C) The summer camp example.

The schema organizes the counselors, the children, and the orders into two categories each.
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and nine drugs, which leads to 54 object-level problems and 54 object-level models in total.

Fig. 1A shows three of these object-level models, where the first example indicates that

ingesting Doxazosin tends to cause Alice to develop headaches. The observations that allow

these object-level models to be learned will be called event data or contingency data, and

they are shown at the bottom level of Fig. 1A. The first column of event data indicates, for

example, that Alice has taken Doxazosin 10 times and has experienced headaches on seven

of these occasions.

The 54 object-level models form a natural family, and learning several models from this

family should support inferences about subsequent members of the family. For example,

learning how Doxazosin affects Alice may help us to rapidly learn how Doxazosin affects

Bob, and learning how Alice responds to Doxazosin may help us to rapidly learn how Alice

responds to Prazosin. This paper will explore how people learn to learn object-level causal

models. In other words, we will explore how learning several of these models can allow sub-

sequent models in the same family to be rapidly learned.

The need to capture relationships between object-level problems like Eqns. 2 and 3 moti-

vates the notion of a causal schema. Each possible schema organizes the people and the

drugs into categories and specifies causal relationships between these categories. For exam-

ple, the schema in Fig. 1A organizes the six people into two categories (A-people and

B-people) and the nine drugs into three categories (alpha blockers, beta blockers, and ACE

inhibitors). The schema also includes category-level causal models that specify relationships

between these categories. Because there are two categories of people and three categories of

drugs, six category-level models must be specified in total, one for each combination of a

person category and drug category. For example, the category-level models in Fig. 1A

indicate that alpha blockers tend to produce headaches in A-people, beta blockers tend to

produce headaches in B-people, and ACE inhibitors rarely produce headaches in either

group. Note that the schema supports inferences about the object-level models in Fig. 1A.

For example, because Alice is an A-person and Doxazosin is an alpha-blocker, the schema

predicts that ingesting Doxazosin will cause Alice to experience headaches.

To explore how causal schemata are learned and used to guide inferences about object-

level models, we work within a hierarchical Bayesian framework. The diagram in Fig. 1A

can be transformed into a hierarchical Bayesian model by specifying how the information at

each level is generated given the information at the level immediately above. We must

therefore specify how the event data are generated given the object-level models, how the

object-level models are generated given the category-level models, and how the category-

level models are generated given a set of categories.

Although our framework is formalized as a top-down generative process, we will use

Bayesian inference to invert this process and carry out bottom-up inference. In particular,

we will focus on problems where event data are observed at the bottom level and the learner

must simultaneously learn the object-level causal models, the category-level causal models

and the categories that occupy the upper levels. After observing event data at the bottom

level, our probabilistic model computes a posterior distribution over the representations at

the upper levels, and our working assumption is that the categories and causal models

learned by people are those assigned maximum posterior probability by our model. We do
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not discuss psychological mechanisms that might allow humans to identify the representa-

tions with maximum posterior probability, but future work can explore how the computa-

tions required by our model can be implemented or approximated by psychologically

plausible mechanisms.

Although it is natural to say that the categories and causal models are learned from the

event data available at the bottom level of Fig. 1A, note that this achievement relies on sev-

eral kinds of background knowledge. We assume that the learner already knows about the

relevant domains (e.g., people and drugs) and events (e.g., ingestion and headache events)

and is attempting to solve a problem that is well specified at the domain level (e.g., the prob-

lem of deciding whether ingesting drugs can cause headaches). We also assume that the

existence of the hierarchy in Fig. 1A is known in advance. In other words, our framework

knows from the start that it should search for some set of categories and some set of causal

models at the category and object levels, and learning is a matter of finding the candidates

that best account for the data. We return to the question of background knowledge in the

General Discussion and consider the extent to which some of this knowledge might be the

outcome of prior learning.

We have focused on the drugs and headaches scenario so far, but the same hierarchical

approach should be relevant to many different settings. Suppose that we are interested in the

relationship between touching a plant and subsequently developing a rash. In this case the

domain-level problem can be formulated as

touchesðperson; plantÞ!? rashðpersonÞ

We may notice that only certain plants produce rashes, and that only certain people are

susceptible to rashes. A schema consistent with this idea is shown in Fig. 1B. There are two

categories of plants (allergens and nonallergens), and two categories of people (allergic and

nonallergic). Allergic people develop rashes after touching allergenic plants, including poi-

son oak, poison ivy, and poison sumac. Allergic people, however, do not develop rashes

after touching nonallergenic plants, and nonallergic people never develop rashes after touch-

ing plants.

As a third motivating example, suppose that we are interested in social relation-

ships among the children and the counselors at a summer camp. In particular, we

would like to predict whether a given child will become angry with a given counselor

if that counselor gives her a certain kind of order. The domain-level problem for this

setting is:

ordersðcounselor; child; orderÞ!? angryðchild; counselorÞ

One possible schema for this setting is shown in Fig. 1C. There are two categories of

counselors (popular and unpopular), two categories of children (polite and rebellious), and

two categories of orders (fair and unfair). Rebellious children may become angry with a

counselor if that counselor gives them any kind of order. Polite children accept fair orders
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from popular counselors, but may become angry if a popular counselor gives them an unfair

order or if an unpopular counselor gives them any kind of order.

Our experiments will make use of a fourth causal setting. Consider the blocks and the

machine in Fig. 2A. The machine has a GO button, and it will sometimes activate and flash

yellow when the button is pressed. Each block can be placed inside the machine, and

whether the machine is likely to activate might depend on which block is inside. The

domain-level problem for this setting is:

insideðblock; machineÞ & button pressedðmachineÞ!? activateðmachineÞ

Note that the event on the left-hand side is a compound event which combines a state (a

block is inside the machine) and an action (the button is pressed). In general, both the left-

and right-hand sides of a domain-level problem may specify compound events that are

expressed using multiple predicates.

One schema for this problem might organize the blocks into two categories: active blocks

tend to activate the machine on most trials, and inert blocks seem to have no effect on the

machine. Note that the blocks and machine example is somewhat similar to the drugs and

headaches example: Blocks and drugs play corresponding roles, machines and people play

(A)

(B)

GO

Fig. 2. Stimuli used in our experiments. (A) A machine and some blocks. The blocks can be placed inside the

machine and the machine sometimes activates (flashes yellow) when the GO button is pressed. The blocks used

for each condition of Experiments 1, 2, and 4 were perceptually indistinguishable. (B) Blocks used for Experi-

ment 3. The blocks are grouped into two family resemblance categories: blocks on the right tend to be large,

blue, and spotted, and tend to have a gold boundary but no diagonal stripe. These blocks are based on stimuli

created by Sakamoto and Love (2004).
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corresponding roles, and the event of a machine activating corresponds to the event of a

person developing a headache.

The next sections introduce our approach more formally and we develop our framework

in several steps. We begin with the problem of learning a single object-level model—for

example, learning whether ingesting Doxazosin causes Alice to develop headaches

(Fig. 3A). We then turn to the problem of simultaneously learning multiple object-level

models (Fig. 3B) and show how causal schemata can help in this setting. We next extend

our framework to handle problems where the objects of interest (e.g., people and drugs)

have perceptual features that may be correlated with their categories (Fig. 3C). Our final

analysis addresses problems where multiple members of the same domain may interact to

produce an effect—for example, two drugs may produce a headache when paired although

neither causes headaches in isolation.

Event
data

Causal models
Object−level

Schema

Event

causal models

data

Object−level

Schema

Event

causal model

data

Object−level

Feature
data

Events Domains

Category-level
causal models

Category-level
feature means

CAUSAL
Categories

SCHEMA

Event data Feature data

Object-level
causal models

Domain-level
problem

F

Fig. 3. A hierarchical Bayesian approach to causal learning. (A) Learning a single object-level causal model. (B)

Learning causal models for multiple objects. The schema organizes the objects into categories and specifies the

causal powers of each category. (C) A generative framework for learning a schema that includes information

about the characteristic features of each category. (D) A generative framework that includes (A)–(C) as special

cases. Nodes represent variables or bundles of variables and arrows indicate dependencies between variables.

Shaded nodes indicate variables that are observed or known in advance, and unshaded nodes indicate variables

that must be inferred. We will collectively refer to the categories, the category-level causal models, and the cate-

gory-level feature means as a causal schema. Note that the hierarchy in Fig. 1A is a subset of the complete

model shown here.
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Although we develop our framework in stages and consider several increasingly sophisti-

cated models along the way, the result is a single probabilistic framework that addresses all

of the problems we discuss. The framework is shown as a graphical model in Fig. 3D. Each

node represents a variable or bundle of variables, and some of the nodes have been anno-

tated with variable names that will be used in later sections of the paper. Arrows between

nodes indicate dependencies—for example, the top section of the graphical model indicates

that a domain-level problem such as

ingestsðperson; drugÞ!? headacheðpersonÞ

is formulated in terms of domains (people and drugs) and events (ingests(Æ,Æ) and head-

ache(Æ)). Shaded nodes indicate variables that are observed (e.g., the event data) or specified

in advance (e.g., the domain-level problem), and the unshaded nodes indicate variables that

must be learned. Note that the three models in Fig. 3A–C correspond to fragments of the

complete model in Fig. 3D, and we will build up the complete model by considering these

fragments in sequence.

3. Learning a single object-level causal model

We begin with the problem of elemental causal induction (Griffiths & Tenenbaum, 2005)

or the problem of learning a causal model for a single object-level problem. Our running

example will be the problem

ingestsðAlice; DoxazosinÞ!? headacheðAliceÞ

where the cause event indicates whether Alice takes Doxazosin and the effect event indi-

cates whether she subsequently develops a headache. Let o refer to the object Doxazosin,

and we overload our notation so that o can also refer to the cause event ingests(Alice,

Doxazosin). Let e refer to the effect event headache(Alice).

Suppose that we have observed a set of trials where each trial indicates whether or not

cause event o occurs, and whether or not the effect e occurs. Data of this kind are often

called contingency data, but we refer to them as event data V. We assume that the outcome

of each trial is generated from an object-level causal model M that captures the causal rela-

tionship between o and e (Fig. 5). Having observed the trials in V, our beliefs about the cau-

sal model can be summarized by the posterior distribution P(MjV):

b
b

e = 1
0
1

o

a = 0
o

e

o

e

0
1

b
1 − (1 − b)(1 − s)

o e = 1

a = 1 g = 1
o

e

0
1

b
b(1 − s)

o e = 1

a = 1 g = 0(C)(B)(A)

Fig. 4. Causal graphical models that capture three possible relationships between a cause o and an effect e. Vari-

able a indicates whether there is a causal relationship between o and e, variable g indicates whether this

relationship is generative or preventive, and variable s indicates the strength of this relationship. A generative

background cause of strength b is always present.
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PðM jVÞ / PðV jMÞPðMÞ: ð4Þ

The likelihood term P(V j M) indicates how compatible the event data V are with model

M, and the prior P(M) captures prior beliefs about model M.

We parameterize the causal model M using four causal variables (Figs. 4 and 5). Let a
indicate whether there is an arrow joining o and e, and let g indicate the polarity of this

causal relationship (g ¼ 1 if o is a generative cause and g ¼ 0 if o is a preventive cause).

Suppose that s is the strength of the relationship between o and e.1 To capture the possibility

that e will be present even though o is absent, we assume that a generative background cause

of strength b is always present. We specify the distribution P(e j o) by assuming that gener-

ative and preventive causes combine according to a network of noisy-OR and noisy-

AND-NOT gates (Glymour, 2001).

Now that we have parameterized model M in terms of the triple (a,g,s) and the back-

ground strength b, we can rewrite Eq. 4 as

Pða; g; s; b jVÞ / PðV j a; g; s; bÞPðaÞPðgÞPðsÞPðbÞ: ð5Þ

To complete the model we must place prior distributions on the four causal variables. We

use uniform priors on the two binary variables (a and g), and we use priors P(s) and P(b)

that capture the expectation that b will be small and s will be large. These priors on s and b
are broadly consistent with the work of Lu, Yuille, Liljeholm, Cheng and Holyoak (2008),

who suggest that learners typically expect causes to be necessary (b should be low) and

sufficient (s should be high). Complete specifications of P(s) and P(b) are provided in

Appendix A.

To discover the causal model M that best accounts for the events in V, we can search for

the causal variables with maximum posterior probability according to Eq. 5. There are many

empirical studies that explore human inferences about a single potential cause and a single

effect, and previous researchers (Griffiths & Tenenbaum, 2005; Lu et al., 2008) have shown

that a Bayesian approach similar to ours can account for many of these inferences. Here,

however, we turn to the less-studied case where people must learn about many objects, each

of which may be causally related to the effect of interest.

�
Causal model (M)

Event data (V )

o

e

0
1

0 2
1 − 0 8 × 0 1

o e = 1
∅ o

o

e− :
e+ : 20

80
92
8

eb : +0 2

a g s :
(A) (B)+0 9

Fig. 5. (A) Learning an object-level causal model M from event data V (see Fig. 3A). The event data specify the

number of times the effect was (e+) and was not (e)) observed when o was absent (;) and when o was present.

The model M shown has a ¼ 1, g ¼ 1, s ¼ 0.9, and b ¼ 0.2, and it is a compact representation of the graphical

model in (B).
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4. Learning multiple object-level models

Suppose now that we are interested in simultaneously learning multiple object-level cau-

sal models. For example, suppose that our patient Alice has prescriptions for many different

drugs and we want to learn about the effect of each drug:

ingestsðAlice; DoxazosinÞ!? headacheðAliceÞ

ingestsðAlice; PrazosinÞ!? headacheðAliceÞ

ingestsðAlice; TerazosinÞ!?
..
.
headacheðAliceÞ

For now we assume that Alice takes at most one drug per day, but later we relax this

assumption and consider problems where patients take multiple drugs and these drugs may

interact. We refer to the ith drug as object oi, and as before we overload our notation so that

oi can also refer to the cause event ingests(Alice, oi).

Our goal is now to learn a set {Mi} of causal models, one for each drug (Figs. 3b and 6).

There is a triple (ai,gi,si) describing the causal model for each drug oi, and we organize these

variables into three vectors, a, g, and s. Let W be the tuple (a, g, s, b) which includes all the

parameters of the causal models. As before, we assume that a generative background cause

of strength b is always present.

One strategy for learning multiple object-level models is to learn each model separately

using the methods described in the previous section. Although simple, this strategy will not

succeed in learning to learn because it does not draw on experience with previous objects

when learning a causal model for a novel object that is sparsely observed. We will allow

information to be shared across causal models for different objects by introducing the notion

of a causal schema. A schema specifies a grouping of the objects into categories and

includes category-level causal models which specify the causal powers of each category.

The schema in Fig. 6 indicates that there are two categories: objects belonging to category

cA tend to prevent the effect and objects belonging to category cB tend to cause the effect.

The strongest possible assumption is that all members of a category must play identical cau-

sal roles. For example, if Doxazosin and Prazosin belong to the same category, then the cau-

sal models for these two drugs should be identical. We relax this strong assumption and

assume instead that members of the same category play similar causal roles. More precisely,

we assume that the object-level models corresponding to a given category-level causal

model are drawn from a common distribution.

Formally, let zi indicate the category of oi, and let �a, �g, �s, and �b be schema-level analogs

of a, g, s, and b. Variable �aðcÞ is the probability that any given object belonging to category

c will be causally related to the effect, variables �gðcÞ and �sðcÞ specify the expected polarity

and causal strength for objects in category c, and variable �b specifies the expected strength

of the generative background cause. Even though a and g are vectors of probabilities, Fig. 6

simplifies by showing each �aðcÞ and �gðcÞ as a binary variable. To generate a causal model

for each object, we assume that each arrow variable ai is generated by tossing a coin with
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weight �aðziÞ, that each polarity gi is generated by tossing a coin with weight �gðziÞ, and that

each strength si is drawn from a distribution parameterized by �sðziÞ. Let �W be a tuple

ð�a; �g; �s; �bÞ that includes all parameters of the causal schema. A complete description of each

parameter is provided in Appendix A.

Now that the generative approach in Fig. 1A has been fully specified we can use it to

learn the category assignments z, the category-level models �W, and the object-level models

W that are most probable given the events V that have been observed:

Pðz; �W;W jVÞ / PðV jWÞPðW j �W; zÞPð �W j zÞPðzÞ: ð6Þ

The distribution P(V j W) is defined by assuming that the contingency data for each

object-level model are generated in the standard way from that model. The distribution

PðW j �W; zÞ specifies how the model parameters W are generated given the category-level

models �W and the category assignments z. To complete the model, we need prior distribu-

tions on z and the category-level models �W. Our prior P(z) assigns some probability mass to

all possible partitions but favors partitions that use a small number of categories. Our prior

Pð �W j zÞ captures the expectation that generative and preventive causes are equally likely a

priori, that causal strengths are likely to be high, and that the strength of the background

cause is likely to be low. Full details are provided in Appendix A.

Fig. 6 shows how a schema and a set of object-level causal models (top two levels) can

be simultaneously learned from the event data V in the bottom level. All of the variables in

the figure have been set to values with high posterior probability according to Eq. 6: for

instance, the partition z shown is the partition with maximum posterior probability. Note

that learning a schema allows a causal model to be learned for object o7, which is very spar-

sely observed (see the underlined entries in the bottom level of Fig. 6). On its own, a single

trial might not be very informative about the causal powers of this object, but experience

o6 o7

cB

e

Causal
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Event
data
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e

ā ḡ s̄ :

z :

e

2

e

oo 3

e
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o5
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o4
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o1

a g s :

b : +0 2

∅ o2o1 o4 o5o3 o6
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8
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Fig. 6. Learning a schema and a set of object-level causal models (see Fig. 3B). z specifies a set of categories,

where objects belonging to the same category have similar causal powers, and �a, �g, and �s specify a set of cate-

gory-level causal models. Note that the schema supports inferences about an object (o7, counts underlined in

red) that is very sparsely observed.
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with previous objects allows the model to predict that o7 will produce the effect about as

regularly as the other members of category cB.

To compute the predictions of our model we used Markov chain Monte Carlo methods to

sample from the posterior distribution in Eq. 6. A more detailed description of this inference

algorithm is provided in Appendix A, but note that this algorithm is not intended as a model

of psychological processing. The primary contribution of this section is the computational

theory summarized by Eq. 6, and there will be many ways in which the computations

required by this theory can be approximately implemented.

5. Experiments 1 and 2: Testing the basic schema-learning model

Our schema-learning model attempts to satisfy two criteria when learning about the cau-

sal powers of a novel object. When information about the new object is sparse, predictions

about this object should be based primarily on experience with previous objects. Relying on

past experience will allow the model to go beyond the sparse and noisy observations that

are available for the novel object. Given many observations of the novel object, however,

the model should rely heavily on these observations and should tend to ignore its observa-

tions of previous objects. Discounting past experience in this way will allow the model to be

flexible if the new object turns out to be different from all previous objects.

Our first two experiments explore this tradeoff between conservatism and flexibility. Both

experiments used blocks and machines like the examples in Fig. 2. As mentioned already,

the domain-level problem for this setting is:

insideðblock; machineÞ & button pressedðmachineÞ!? activateðmachineÞ

In terms of the notation we have been using, each block is an object oi, each button press

corresponds to a trial, and the effect e indicates whether the machine activates on a given

trial.

Experiment 1 studied people’s ability to learn a range of different causal schemata from

observed events and to use these schemata to rapidly learn about the causal powers of new,

sparsely observed objects. To highlight the influence of causal schemata, inferences about

each new object were made after observing at most one trial where the object was placed

inside the machine. Across conditions, we varied the information available during training,

and our model predicts that these different sets of observations should lead to the formation

of qualitatively different schemata, and hence to qualitatively different patterns of inference

about new, sparsely observed objects.

Experiment 2 explores in more detail how observations of a new object interact with a

learned causal schema. Instead of observing a single trial for each new object, participants

now observed seven trials and judged the causal power of the object after each one. Some

sequences of trials were consistent with the schema learned during training, but others were

inconsistent. Given these different sequences, our model predicts how and when learners

should overrule their schema-based expectations when learning a causal model for a novel
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object. These predicted learning curves—or ‘‘unlearning curves’’—were tested against the

responses provided by participants.

Our first two experiments were also designed in part to evaluate our model relative to

other computational accounts. Although we know of no previous model that attempts to cap-

ture causal learning at multiple levels of abstraction, we will consider some simple models

inspired by standard models in the categorization literature. These models are discussed and

analyzed following the presentation of Experiments 1 and 2.

5.1. Experiment 1: One-shot causal learning

Experiment 1 explores whether participants can learn different kinds of schemata and use

these schemata to rapidly learn about the causal powers of new objects. In each condition of

the experiment, participants initially completed a training phase where they placed each of

eight objects into the machine multiple times and observed whether the machine activated

on each trial. In different conditions they observed different patterns of activation across

these training trials. In each condition, the activations observed were consistent with the

existence of one or two categories, and these categories had qualitatively different causal

powers across the different conditions. After each training phase, participants completed a

‘‘one-shot learning’’ task, where they made predictions about test blocks after seeing only a

single trial involving each block.

5.1.1. Participants
Twenty-four members of the MIT community were paid for participating in this experi-

ment.

5.1.2. Stimuli
The experiment used a custom-built graphical interface that displayed a machine and

some blocks (Fig. 2A). Participants could drag the blocks around, and they were able to

place up to one block inside the machine at a time. Participants could also interact with the

machine by pressing the GO button and observing whether the machine activated. The

blocks used for Experiments 1 and 2 were perceptually indistinguishable, and their causal

powers could therefore not be predicted on the basis of their physical appearance.

5.1.3. Design
The experiment includes four within-participant conditions and the training data for

each condition are summarized in Fig. 7. The first condition (p ¼ {0, 0.5}) includes two

categories of blocks: blocks in the first category never activate the machine, and blocks

in the second category activate the machine about half the time. The second condition

(p ¼ {0.1, 0.9}) also includes two categories: blocks in the first category rarely activate

the machine, and blocks in the second category usually activate the machine. The remain-

ing conditions each include only one category of blocks: blocks in the third condition

(p ¼ 0) never activate the machine, and blocks in the fourth condition (p ¼ 0.1) activate

the machine rarely.
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5.1.4. Procedure
At the start of each condition, participants are shown an empty machine and asked to

press the GO button 10 times. The machine fails to activate on each occasion. One by one

the training blocks are introduced, and participants place each block in the machine and

press the GO button one or more times. The outcomes of these trials are summarized in

Fig. 7. For example, the p ¼ {0, 0.5} condition includes eight training blocks in total, and

the block shown as o1 in the table fails to activate the machine on each of 10 trials. After the

final trial for each block, participants are asked to imagine pressing the GO button 100 times

when this block is inside the machine. They then provide a rating which indicates how likely

it is that the total number of activations will fall between 0 and 20. All ratings are provided

on a seven-point scale where one is labeled as ‘‘very unlikely,’’ seven is labeled as ‘‘very

likely,’’ and the other values are left unlabeled. Ratings are also provided for four other

intervals: between 20 and 40, between 40 and 60, between 60 and 80, and between 80 and

100. Each block remains on screen after it is introduced, and by the end of the training phase

six or eight blocks are therefore visible onscreen. After the training phase two test blocks

are introduced, again one at a time. Participants provide ratings for each block before it has

been placed in the machine, and after a single trial. One of the test blocks (o+) activates the

machine on this trial, and the other (o)) does not.

The set of four conditions is designed to test the idea that inductive constraints and induc-

tive flexibility are both important. The first two conditions test whether experience with the

training blocks allows people to extract constraints that are useful when learning about the

causal powers of the test blocks. Conditions three and four explore cases where these

o1 o2 o3 o4 o5 o6 o7 o8
e+ : 0 0 0 0 0 5 4
e− : 10 10 10 10 1 5 6

o1 o2 o3 o4 o5 o6 o7 o8
e+ : 0 1 2 1 0 9 8
e− : 10 9 8 9 1 1 0

o1 o2 o3 o4 o5 o6
e+ : 0 0 0
e− : 10 10 10 10 10 1 0

o1 o2 o3 o4 o5 o6
e+ : 0 1 2
e− : 10 9 8

6 1
4 0

9 1
2 1

0 0 0 0
0 1

1 2 1 2
9 8 9 8

Condition Training data

p = 0 1 0 9

p = 0

p = 0 1

p = 0 0 5
∅

∅

∅

∅

Fig. 7. Training data for the four conditions of Experiment 1. In each condition, the first column of each table

shows that the empty machine fails to activate on each of the 10 trials. Each remaining column shows the out-

come of one or more trials when a single block is placed inside the machine. For example, in the p ¼ {0, 0.5}

condition block o1 is placed in the machine 10 times and fails to activate the machine on each trial.
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constraints need to be overruled. Note that test block o+ is surprising in these conditions

because the training blocks activate the machine rarely, if at all.

To encourage participants to think about the conditions separately, machines and blocks

of different colors were used for each condition. Note, however, that the blocks within each

condition were always perceptually identical. The order in which the conditions were pre-

sented was counterbalanced according to a Latin square design. The order of the training

blocks and the test blocks within each condition was also randomized subject to several con-

straints. First, the test blocks were always presented after the training blocks. Second, in con-

ditions p ¼ {0, 0.5} and p ¼ {0.1, 0.9} the first two training blocks in the sequence always

belonged to different categories, and the two sparsely observed training blocks (o4 and o8)

were always the third and fourth blocks in the sequence. Finally, in the p ¼ 0 condition test

block o+ was always presented second, because this block is unlike any of the training blocks

and may have had a large influence on predictions about any block which followed it.

5.1.5. Model predictions
Fig. 8 shows predictions when the schema-learning model is applied to the data in Fig. 7.

Each plot shows the posterior distribution on the activation strength of a test block: the prob-

ability P(e j o) that the block will activate the machine on a given trial. Because the

background rate is zero, this distribution is equivalent to a distribution on the causal power
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Fig. 8. Predictions of the schema-learning model for Experiment 1. Each subplot shows the posterior distribution

on the activation strength of a test block. There are three predictions for each condition: The first row shows

inferences about a test block before this block has been placed in the machine, and the remaining rows show

inferences after a single negative (o)) or positive (o+) trial is observed. Note that the curves represent probability

density functions and can therefore attain values greater than 1.
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(Cheng, 1997) of the test block. Recall that participants were asked to make predictions

about the number of activations expected across 100 trials. If we ask our model to make the

same predictions, the distributions on the total number of activations will be discrete distri-

butions with shapes similar to the distributions in Fig. 8.

The plots in the first row show predictions about a test block before it is placed in the

machine. The first plot indicates that the model has discovered two causal categories, and it

expects that the test block will activate the machine either very rarely or around half of the

time. The two peaks in the second plot again indicate that the model has discovered two

causal categories, this time with strengths around 0.1 and 0.9. The remaining two plots are

unimodal, suggesting that only one causal category is needed to explain the data in each of

the p ¼ 0 and p ¼ 0.1 conditions.

The plots in the second row show predictions about a test block (o)) that fails to activate

the machine on one occasion. All of the plots have peaks near 0 or 0.1. Because each condi-

tion includes blocks that activate the machine rarely or not at all, the most likely hypothesis

is always that o) is one of these blocks. Note, however, that the first plot has a small bump

near 0.5, indicating that there is some chance that test block o) will activate the machine

about half of the time. The second plot has a small bump near 0.9 for similar reasons.

The plots in the third row show predictions about a test block (o+) that activates the

machine on one occasion. The plot for the first condition peaks near 0.5, which is consistent

with the hypothesis that blocks which activate the machine at all tend to activate it around

half the time. The plot for the second condition peaks near 0.9, which is consistent with the

observation that some training blocks activated the machine nearly always. The plot for the

third condition has peaks near 0 and near 0.9. The first peak captures the idea that the test

block might be similar to the training blocks, which activated the machine very rarely.

Given that none of the training blocks activated the machine, one positive trial is enough to

suggest that the test block might be qualitatively different from all previous blocks, and the

second peak captures this hypothesis. The curve for the final condition peaks near 0.1, which

is the frequency with which the training blocks activated the machine.

5.1.6. Results
The four columns of Fig. 9 show the results for each condition. Each participant provided

ratings for five intervals in response to each question, and these ratings can be plotted as a

curve. Fig. 9 shows the mean curve for each question. The first row shows predictions

before a test block has been placed in the machine (responses for test blocks o) and o+ have

been combined). The second and third rows show predictions after a single trial for test

blocks o) and o+.

The first row provides a direct measure of what participants have learned during the

training for each condition. Note first that the plots for the four rows are rather different,

suggesting that the training observations have shaped people’s expectations about novel

blocks. A two-factor anova with repeated measures supports this conclusion, and it indicates

that there are significant main effects of interval [F(4,92) ¼ 31.8, p < .001] and condition

[F(3,69) ¼ 15.7, p < .001] but no significant interaction between interval and condition

[F(12,276) ¼ 0.74, p > .5].

18 C. Kemp, N. D. Goodman, J. B. Tenenbaum ⁄ Cognitive Science (2010)



In three of the four conditions, the human responses in the top row of Fig. 9 are consistent

with the model predictions in Fig. 8. As expected, the curves for the p ¼ 0 and p ¼ 0.1 con-

ditions indicate an expectation that the test blocks will probably fail to activate the machine.

The curve for the p ¼ {0, 0.5} condition peaks in the same places as the model prediction,

suggesting that participants expect that each test block will either activate the machine very

rarely or about half of the time. The first (0.1) and third (0.5) bars in the plot are both greater

than the second (0.3) bar, and paired sample t tests indicate that both differences are statisti-

cally significant (p < .05, one-tailed). The p ¼ {0, 0.5} curve is therefore consistent with

the idea that participants have discovered two categories.

The responses for the p ¼ {0.1, 0.9} condition provide no evidence that participants have

discovered two causal categories. The curve for this condition is flat or unimodal and does

not match the bimodal curve predicted by the model. One possible interpretation is that

learners cannot discover categories based on probabilistic causal information. As suggested

by the p ¼ {0, 0.5} condition, learners might distinguish between blocks that never produce

the effect and those that sometimes produce the effect, but not between blocks that produce

the effects with different strengths. A second possible interpretation is that learners can form

categories based on probabilistic information but require more statistical evidence than we

provided in Experiment 1. Our third experiment supports this second interpretation and

demonstrates that learners can form causal categories on the basis of probabilistic evidence.
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Fig. 9. Results for the four conditions in Experiment 1. Each subplot shows predictions about a new object that

will undergo 100 trials, and each bar indicates the probability that the total number of activations will fall within

a certain interval. The x-axis shows the activation strengths that correspond to each interval and the y-axis shows

probability ratings on a scale from one (very unlikely) to seven (very likely). All plots show mean responses

across 24 participants. Error bars for this plot and all remaining plots show the standard error of the mean.
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Consider now the third row of Fig. 9, which shows predictions about a test block (o+) that

has activated the machine exactly once. As before, the differences between these plots sug-

gest that experience with previous blocks shapes people’s inferences about a sparsely

observed novel block. A two-factor anova with repeated measures supports this conclusion,

and indicates that there is no significant main effect of interval [F(4,92) ¼ .46, p > .5], but

that there is a significant main effect of condition [F(3,69) ¼ 4.20, p < .01] and a significant

interaction between interval and condition [F(12,276) ¼ 6.90, p < .001]. Note also that all

of the plots in the third row peak in the same places as the curves predicted by the model

(Fig. 8A). For example, the middle (0.5) bar in the p ¼ {0, 0.5} condition is greater than

the bars on either side, and paired sample t tests indicate that both differences are statisti-

cally significant (p < .05, one-tailed). The plot for the p ¼ 0 condition provides some sup-

port for a second peak near 0.9, although a paired-sample t test indicates that the difference

between the fifth (0.9) and fourth (0.7) bars is only marginally significant (p < .1, one-

tailed). Our second experiment explores this condition in more detail, and it establishes

more conclusively that a single positive observation can be enough for a learner to decide

that a block is different from all previously observed blocks.

Consider now the second row of Fig. 9, which shows predictions about a test block (o))

that has failed to activate the machine exactly once. The plots in this row are all decaying

curves, because each condition includes blocks that activate the machine rarely or not at all.

Again, though, the differences between the curves are interpretable and match the predic-

tions of the model. For instance, the p ¼ 0 curve decays more steeply than the others, which

makes sense because the training blocks for this condition never activate the machine. In

particular, note that the difference between the first (0.1) and second (0.3) bars is greater in

the p ¼ 0 condition than the p ¼ 0.1 condition (p < .001, one-tailed).

Although our primary goal in this paper is to account for the mean responses to each

question, the responses of individual participants are also worth considering. Kemp (2008)

presents a detailed analysis of individual responses and shows that in all cases except one

the shape of the mean curve is consistent with the responses of some individuals. The one

exception is the o+ question in the p ¼ 0 condition, where no participant generated a

U-shaped curve, although some indicated that o+ is unlikely to activate the machine and

others indicated that o+ is very likely to activate the machine on subsequent trials. This

disagreement suggests that the p ¼ 0 condition deserves further attention, and our second

experiment explores this condition in more detail.

5.2. Experiment 2: Discovering new causal categories

Causal schemata support inferences about new objects that are sparsely observed, but

sometimes these inferences are wrong and will have to be overruled when a new object turns

out to be qualitatively different from all previous objects. Experiment 1 provided some sug-

gestive evidence that human learners will overrule a schema when necessary. In the p ¼ 0

condition, participants observed six blocks that never activated the machine, then saw a sin-

gle trial where a new block (o+) activated the machine. The results in Fig. 9 suggest that

some participants inferred that the new block might be qualitatively different from the
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previous blocks. This finding suggests that a single observation of a new object is sometimes

enough to overrule expectations based on many previous objects, but several trials may be

required before learners are confident that a new object is unlike any of the previous objects.

To explore this idea, Experiment 2 considers two cases where participants receive increas-

ing evidence that a new object is different from all previously encountered objects.

5.2.1. Participants
Sixteen members of the MIT community were paid for participating in this experiment.

5.2.2. Design and procedure
The experiment includes two within-participant conditions (p ¼ 0 and p ¼ 0.1) that cor-

respond to conditions 3 and 4 of Experiment 1. Each condition is very similar to the corre-

sponding condition from Experiment 1 except for two changes. Seven observations are now

provided for the two test blocks: for test block o), the machine fails to activate on each trial,

and for test block o+ the machine activates on all test trials except the second. Participants

rate the causal strength of each test block after each trial and also provide an initial rating

before any trials have been observed. As before, participants are asked to imagine placing

the test block in the machine 100 times, but instead of providing ratings for five intervals

they now simply predict the total number of activations out of 100 that they expect to see.

5.2.3. Model predictions
Fig. 10 shows the results when the schema-learning model is applied to the tasks in

Experiment 2. In both conditions, predictions about the test blocks track the observations

provided, and the curves rise after each positive trial and fall after each negative trial.
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Fig. 10. Predictions of the schema-learning model for Experiment 2. A new block is introduced that is either

similar (o)) or different (o+) from all previous blocks, and the trials for each block are shown on the left of the

figure. Each plot shows how inferences about the causal power of the block change with each successive trial.
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The most interesting predictions involve test block o+, which is qualitatively different

from all of the training blocks. The o+ curves for both conditions attain similar values by the

final prediction, but the curve for the p ¼ 0 condition rises more steeply than the curve for

the p ¼ 0.1 condition. Because the training blocks in the p ¼ 0.1 condition activate the

machine on some occasions, the model needs more evidence in this condition before con-

cluding that block o+ is different from all of the training blocks.

The predictions about test block o) also depend on the condition. In the p ¼ 0 condition,

none of the training blocks activates the machine, and the model predicts that o) will also

fail to activate the machine. In the p ¼ 0.1 condition, each training block can be expected to

activate the machine about 15 times out of 100. The curve for this condition begins at

around 15, then gently decays as o) repeatedly fails to activate the machine.

5.2.4. Results
Fig. 11 shows average learning curves across 16 participants. The curves are qualitatively

similar to the model predictions, and as predicted the o+ curve for the p ¼ 0 condition rises

more steeply than the corresponding curve for the p ¼ 0.1 condition. Note that a simple

associative account might predict the opposite result, because the machine in condition p ¼
0.1 activates more times overall than the machine in condition p ¼ 0. To support our quali-

tative comparison between the o+ curves in the two conditions, we ran a two-factor anova

with repeated measures. Because we expect that the p ¼ 0 curve should be higher than the

p ¼ 0.1 curve from the second judgment onwards, we excluded the first judgment from each

condition. There are significant main effects of condition [F(1,15) ¼ 6.11, p < .05] and

judgment number [F(6,90) ¼ 43.21, p < .01], and a significant interaction between

condition and judgment number [F(6,90) ¼ 2.67, p < .05]. Follow-up paired-sample t tests

indicate that judgments two through six are reliably greater in the p ¼ 0 condition (in all
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Fig. 11. Mean responses to Experiment 1. The average learning curves closely match the model predictions

in Fig. 10.
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cases p < .05, one-tailed), supporting the prediction that participants are quicker in the p ¼ 0

condition to decide that block o+ is qualitatively different from all previous blocks.

5.3. Alternative models

As mentioned already, our experiments explore the tradeoff between conservatism and

flexibility. When a new object is sparsely observed, the schema-learning model assumes

that this object is similar to previously encountered objects (Experiment 1). Once more

observations become available, the model may decide that the new object is different

from all previous objects and should therefore be assigned to its own category (Experi-

ment 2). We can compare the schema-learning model to two alternatives: an exemplar
model that is overly conservative, and a bottom-up model that is overly flexible. The

exemplar model assumes that each new object is just like one of the previous objects,

and the bottom-up model ignores all of its previous experience when making predictions

about a new object.

We implemented the bottom-up model by assuming that the causal power of a test block

is identical to its empirical power—the proportion of trials on which it has activated the

machine. Predictions of this model are shown in Fig. 12. When applied to Experiment 1, the

most obvious failing of the bottom-up model is that it makes identical predictions about all

four conditions. Note that the model does not make predictions about the first row of

Fig. 8A, because at least one test trial is needed to estimate the empirical power of a new

block. When applied to Experiment 2, the model is unable to make predictions before any

trials have been observed for a given object, and after a single positive trial the model

leaps to the conclusion that test object o+ will always activate the machine. Neither predic-

tion matches the human data, and the model also fails to predict any difference between the

p ¼ 0 and p ¼ 0.1 conditions.

We implemented the exemplar model by assuming that the causal power of each training

block is identical to its empirical power, and that each test block is identical to one of the

training blocks. The model, however, does not know which training block the test block will

match, and it makes a prediction that considers the empirical powers of all training blocks,

weighting each one by its proximity to the empirical power of the test block. Formally, the

distribution dn on the strength of a novel block is defined to be

dn ¼

P
i

widiP
i

wi
ð7Þ

where di is the distribution for training block i, and is created by dividing the interval [0,1]

into eleven equal intervals, setting di(x) ¼ 11 for all values x that belong to the same inter-

val as the empirical power of block i, and setting di(x) ¼ 0 for all remaining values. Each

weight wi is set to 1 ) j pn ) pi j, where pn is the empirical power of the novel block and pi

is the empirical power of training block i. As Eq. 7 suggests, the exemplar model is closely

related to exemplar models of categorization (Medin & Schaffer, 1978; Nosofsky, 1986).
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Predictions of the exemplar model are shown in Fig. 13. The model accounts fairly well

for the results of Experiment 1 but is unable to account for Experiment 2. Because the model

assumes that test object o+ is just like one of the training objects, it is unable to adjust when

o+ activates the machine more frequently than any previous object.

Overall, neither baseline model can account for our results. The bottom-up model is too

quick to throw away observations of previous objects, and the exemplar model is unable to

handle new objects that are qualitatively different from all previous objects. Other baseline

models might be considered, but we are aware of no simple alternative that will account for

all of our data.

Our first two experiments deliberately focused on a very simple setting where causal

schemata are learned and used, but real-world causal learning is often more complex. The
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Fig. 12. Predictions of the bottom-up model for (A) Experiment 1 and (B) Experiment 2. In both cases the model

fails to account for the differences between conditions.
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rest of the paper will address some of these complexities: in particular, we show how our

framework can incorporate perceptual features and can handle contexts where causes

interact to produce an effect.
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Fig. 13. Predictions of the exemplar model for (A) Experiment 1 and (B) Experiment 2. The model accounts

fairly well for Experiment 1 but fails to realize that test block o+ in Experiment 2 is qualitatively different from

all previous blocks.
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6. Learning causal categories given feature data

Imagine that you are allergic to nuts, and that one day you discover a small white sphere

in your breakfast cereal—a macadamia nut, although you do not know it. To discover the

causal powers of this novel object you could collect some causal data—you could eat it and

wait to see what happens. Probably, however, you will observe the features of the object,

including its color, shape, and texture, and decide to avoid it because it is similar to other

allergy-producing foods that you have encountered.

Our hierarchical Bayesian approach can readily handle the idea that members of a given

category tend to have similar features in addition to similar causal powers (Figs. 3C and

14). Suppose that we have a matrix F which captures many features of the objects under

consideration, including their sizes, shapes, and colors. We assume that objects belonging to

the same category have similar features. For instance, the schema in Fig. 14 specifies that

objects of category cB tend to have features f1 through f4, but objects of category cA tend not

to have these features. Formally, let the schema parameters include a matrix �F, where �fjðcÞ
specifies the expected value of feature fj within category c (Fig. 3D). Building on previous

models of categorization (Anderson, 1991), we assume that the value of fj for object oi is

generated by tossing a coin with bias �fjðziÞ. Our goal is now to use the features F along with

the events V to learn a schema and a set of object-level causal models:

Pðz; �F; �W;W jF;VÞ / PðF j �F; zÞPð �F j zÞPðV jWÞPðW j �W; zÞPð �W j zÞPðzÞ: ð8Þ

There are many previous models for discovering categories of objects with similar fea-

tures (Anderson, 1991; Love, Medin, & Gureckis, 2004), and feature-based categorization is
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ā ḡ s̄ :

10

o7o3

e

o4

e

o3

o4

o5 o7

o5
3
17

10 21
e− : 1819

a g s :

Data

Schema

Feature dataEvent data

cB

e

−0 8 −0 8−0 8 +0 8 +0 8

Fig. 14. Learning a schema and a set of object-level causal models given event and feature data (see Fig. 3C).

Objects belonging to the same category have similar causal powers and similar features, and �fi specifies the

expected value of feature fi within each category. Note that the schema supports inferences about the causal pow-

ers of two objects (o1 and o8, counts underlined in red) that are very sparsely observed. The event and feature

data shown are similar to the data used for Experiment 3.
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sometimes pitted against causal categorization (Gopnik & Sobel, 2000). Our schema-learn-

ing model is based on the idea that real-world categories are often distinguished both by

their characteristic features and their characteristic causal interactions. More often than not,

one kind of information will support the categories indicated by the other, but there will also

be cases where the causal data and the feature data conflict. In a later section we show how

our framework can learn whether causal data or feature data provide the more reliable guide

to category membership.

7. Experiment 3: Combining causal and feature data

Our first two experiments suggest that causal schemata allow causal models for novel

objects to be rapidly learned, sometimes on the basis of a single causal event. Our third

experiment explores whether learners can acquire a causal model for an object on the basis

of its perceptual features alone. The objects in this experiment can be organized into two

family resemblance categories on the basis of their perceptual features, and these two cate-

gories are associated with different causal powers. Observing the features of a novel object

should allow a learner to assign it to one of these categories and to make inferences about

its causal powers.

7.1. Participants

Twenty-four members of the MIT community were paid for participating in this

experiment.

7.2. Procedure

Participants are initially shown an empty machine that activates on 10 of the 20 trials.

Ten blocks then appear on screen, and the features of these blocks support two family

resemblance categories (see Figs. 2 and 15). Before any of the blocks is placed in the

machine, participants are informed that the blocks are laid out randomly, and they are

encouraged to drag them around and organize them in a way that will help them predict

what effect they will have on the machine. Participants then observe 20 trials for blocks

o1 through o8, and see that blocks o1 through o4 activate the machine rarely, but blocks

o5 through o8 activate the machine most of the time. After 20 trials for each block,

participants respond to the same question used in Experiment 1: They imagine 100 trials

involving the block and rate how likely it is that the total number of activations will fall

into each of five intervals. After this training phase, participants answer the same

question for test blocks o) and o+ without seeing any trials involving these blocks.

Experiment 1 explored one-shot learning, and this new task might be described as zero-

shot learning. After making predictions for the two test blocks, participants are asked to

sort the blocks into two categories ‘‘according to their effect on the machine’’ and to

explain the categories they chose.
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7.3. Model predictions

Predictions of the schema-learning model are shown in the left column of Fig. 16A. Each

plot shows the probability that a test block will activate the machine on any given trial.2

Both plots have two peaks, indicating that the model has discovered two categories but is

not certain about the category assignments of the test blocks. The plots are skewed in oppo-

site directions: based on the features of the test blocks, the model predicts that o) will

activate the machine rarely, and that o+ will activate the machine often. The left column of

Fig. 16B shows predictions about a control task that is identical to Experiment 3 except that

all blocks are perceptually identical. The curves are now symmetric, indicating that the

model has no basis for assigning the test blocks to one category or another.
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Fig. 16. Results for Experiment 3. (A) Model predictions and mean responses across 24 participants. Even

though no trials are ever observed for objects o) and o+, participants use the features of these objects to make

predictions about their causal powers. (B) Model predictions and mean responses for a control task where all

objects are perceptually identical.
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e− : 10 0 17 18 19 18 2 2 3 1 0

f1 : 1 0 0 0 0 0 1 1 1 1
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Fig. 15. Training data for Experiment 3. The event data are consistent with two categories: The first includes

objects that prevent the machine from activating, and the second includes objects that activate the machine.

Features f1 through f5 are ‘‘family resemblance’’ features that provide noisy information about the underlying

categories.
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Predictions about the sorting task are summarized in Fig. 17A. The top few sorts are

included, and the most probable solution according to the model is the family resemblance

sort. Although the model allows sorts with any number of categories (including one, three

or more), the probabilities shown in Fig. 17A are calculated with respect to the class of all

two-category solutions.

7.4. Results

Mean responses for the two test blocks are shown in the right column of Fig. 16A. Both

plots are U-shaped curves, suggesting that participants realize that some blocks activate the

machine rarely and others activate the machine often, but that few blocks activate the

machine half the time. As predicted, the curves are skewed in opposite directions, indicating

that o+ is considered more likely to activate the machine than o). We ran a two-factor anova

which compared ratings for the first (0–20) and last (80–100) intervals across the two test

blocks. There is no main effect of interval [F(1,23) ¼ 0.056, p > .5] or of test block

[F(1,23) ¼ 1.50, p > .1], but there is a significant interaction between interval and test block

[F(1,23) ¼ 6.90, p < .05]. Follow up paired-sample t tests support the claim that both plots

in Fig. 16 show skewed U-shaped curves. In the case of object o), the 0.1 bar is significantly

greater than the 0.9 bar (p < .05, one-sided) and the difference between the 0.9 bar and the

0.5 bar is marginally significant (p ¼ .07, one-sided). In the case of object o), the 0.9 bar is

significantly greater than the 0.1 bar (p < .05, one-sided) and the difference between the 0.1

bar and the 0.5 bar is marginally significant (p ¼ .07, one-sided).

We ran an additional 24 participants in a control task that was identical to Experiment 3

except that all blocks were perceptually identical. Mean responses are shown in the right

column of Fig. 16B, and participants now generate U-shaped curves that are close to sym-

metric. The anova analysis described in the previous paragraph now indicates that there is

no main effect of interval or test block, and no significant interaction between interval and

test block. Although both human curves in Fig. 16B are higher on the left than the right,

paired-sample t tests indicate that there is no significant difference between the 0.1 bar and
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Fig. 17. Sorts for Experiment 3. (A) Relative probabilities of nine sorts according to the schema-learning model.

Each sort is represented as a vector that specifies category assignments for the 10 objects in Fig. 15. The model

prefers the family resemblance sort. (B) Sorts chosen by participants. Any sort not shown was chosen by at most

one participant. (C) Sorts chosen in the control condition when no causal information was available.
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the 0.9 bar in either case (p > .2). The differences between the 0.9 bar and the 0.5 bar fail to

reach significance in both cases, but the 0.1 bars are significantly greater than the 0.5 bars in

both cases (p < .05, one-sided).

The U-shaped curves in Fig. 16A,B resolve a question left open by Experiment 1.

Responses to the f ¼ f0:1; 0:9g condition of the first experiment did not indicate that par-

ticipants had identified two categories, but the U-shaped curves in Fig. 16B suggest that

participants recognized two categories of blocks. All of the blocks in Experiment 3 produce

the effect sometimes, and the U-shaped curves suggest that participants can use probabilistic

causal information to organize objects into categories. Two differences between Experiment

3 and the second condition of Experiment 1 seem particularly important. In Experiment 3,

more blocks were observed for each category (4 rather than 3), and more trials were

observed for each block (20 rather than 10). Experiment 3 therefore provides more statistical

evidence that there are two categories of blocks.

Responses to the sorting task are summarized in Fig. 17B. The most popular sort orga-

nizes the blocks into the two family resemblance categories, and it is chosen by eight of the

24 participants. Studies of feature-based categorization have consistently found that family

resemblance sorts are rare, and that participants prefer instead to sort objects according to a

single dimension (e.g., size or color) (Medin, Wattenmaker, & Hampson, 1987). To confirm

that this standard result applies in our case, we ran a control task where no causal observa-

tions were available and participants were asked to sort the blocks into categories on the

basis of their perceptual features. The results in Fig. 17C show that none of 24 participants

chose the family resemblance sort. A chi-square test confirms that the family resemblance

sort was chosen significantly more often in the causal task than the control task (p < .01,

one sided). Our results therefore suggest that the causal information provided in Experiment

3 overcomes the strong tendency to form categories based on a single perceptual dimension.

Regardless of the sort that they chose, most participants explained their response by stat-

ing that one category included ‘‘strong activators’’ or blocks that often lit up the machine,

and that the other included weak activators. For example, one participant wrote that the first

category ‘‘activates approximately 10% of the time’’ and the second category ‘‘activates

approximately 90% of the time.’’ Although most participants seem to have realized that

there were two qualitatively different kinds of blocks, only 13 of the 24 assigned the ‘‘strong

activators’’ (blocks o1 through o4) to one category and the ‘‘weak activators’’ (blocks o5

through o8) to the other category. Some of the remaining participants may have deliberately

chosen an alternative solution, but others gave explanations suggesting that they had lost

track of the training trials. Note that the sorting task is relatively demanding, and that partic-

ipants who do not organize the blocks carefully as they go along are likely to forget how

many times each block activated the machine.

8. Discovering causal interactions between categories

Our approach so far captures some kinds of interactions between categories. For example,

the schema in Fig. 1 captures interactions between categories of drugs and categories of
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people—alpha blockers tend to produce headaches, but only in A-people. This schema,

however, does not capture interactions between categories of drugs, and it makes no predic-

tions about what might happen when alpha blockers and beta blockers are simultaneously

ingested. Drugs may interact in surprising ways—for example, two drugs may produce a

headache when combined even though each one is innocuous on its own. We now extend

our model to handle cases of this kind where each event (e.g., ingestion) can involve varying

numbers of objects (e.g., drugs).

The first step is to extend our notation for domain-level problems to allow sets of objects.

The domain-level problem for the drugs and headaches example now becomes

ingestsðperson; fdruggÞ!? headacheðpersonÞ

where each cause event now specifies that a person ingests a set of drugs. Following Novick

and Cheng (2004) we will decompose each cause event into subevents, one for each subset

of the set of drugs. For example, the object-level problem

ingestsðAlice; fDoxazosin; AcebutololgÞ!? headacheðAliceÞ ð9Þ

can be viewed as a combination of four subproblems

ingestsðAlice; ½�Þ!? headacheðAliceÞ ð10aÞ

ingestsðAlice; ½Doxazosin�Þ!? headacheðAliceÞ ð10bÞ

ingestsðAlice; ½Acebutolol�Þ!? headacheðAliceÞ ð10cÞ

ingestsðAlice; ½Doxazosin; Acebutolol�Þ!? headacheðAliceÞ ð10dÞ

The difference between the curly brackets in Eq. (9) and the square brackets in Eq. (10d)

is significant. The subproblem in Eq. (10d) refers to a causal relationship that depends

exclusively on the interaction between Doxazosin and Acebutolol. In other words, the prop-

erties of this causal relationship depend only on the causal power of the pair of drugs, not on

the causal power of either drug taken in isolation. The problem in Eq. (9) refers to the over-

all relationship that results from combining all instances in Eqs. (10a–d). In other words, the

overall effect of taking Doxazosin and Acebutolol may depend on the base rate of experi-

encing headaches, the effect of Doxazosin alone, the effect of Acebutolol alone, and the

effect of combining the two drugs.

Building on the approach described in previous sections, we introduce a causal model for

each subproblem that depends on three parameters. The first indicates whether the subevent

is causally related to the effect, the second indicates the polarity of this causal relationship,

and the third indicates the strength of this relationship. As before, we organize the drugs into

categories, and we assume that object-level causal models are generated from category-level

models that capture the causal powers of each category acting in isolation. Now, however,
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we introduce additional category-level models that capture interactions between categories.

For instance, if Acebutolol and Atenolol are assigned to the same category, then the causal

models for the subproblems

ingestsðAlice; ½Doxazosin; Acebutolol�Þ!? headacheðAliceÞ

ingestsðAlice; ½Doxazosin; Atenolol�Þ!? headacheðAliceÞ

will be generated from the same category-level model. This approach captures the intuition

that members of the same category (e.g., Acebutolol and Atenolol) are expected to interact

with Doxazosin in a similar way.

To formalize these ideas, we extend the W in Eq. 6 to include an arrow a, a polarity g and

a strength s for each combination of objects. We extend the schema in a similar fashion and

include category-level models for each combination of categories. As before, the parameters

for each object-level causal model are generated from the parameters (�a, �g, and �s) for the

corresponding category-level model. For instance, Fig. 18 shows how the causal model for

the o9 + o18 pair is generated from a category-level model that states that categories cA and

cB interact to generate the effect.

Our main remaining task is to specify how the object-level models for the subinstances in

10 combine to influence the probability that Alice develops a headache after ingesting

Doxazosin and Acebutolol. We use the sequential interaction model of Novick and Cheng

(2004) and assume that subevents combine according to a network of noisy-OR and noisy-

AND-NOT gates (Fig. 19). To capture the idea that the causal powers of a set of objects can

be very different from the causal powers of the objects taken individually, we assume that

subevents involving small sets of objects {e.g., ingests(Alice, [Doxazosin])} act first and

can be overruled by subevents involving larger sets {e.g., ingests(Alice, [Doxazosin, Ate-

nolol])}. Although the sequential interaction model seems appropriate for our purposes, the
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Fig. 18. Learning about interactions between objects. The schema includes category-level models for each indi-

vidual category and for each pair of categories. The schema shown here has two categories: Individual objects of

either category do not produce the effect, but any pair including objects from both categories will produce the

effect. The collection of object-level causal models includes a model for each object and each pair of objects.

Note that the schema supports inferences about sparsely observed individual objects (e.g., o9) and about pairs

that have never been observed to interact (e.g., o9 and o18, counts underlined in red).
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general framework we have developed allows room for accounts of schema learning that

incorporate alternative models of interaction.

9. Experiment 4: Causal interactions between categories

We designed an experiment to explore schema learning in a setting where pairs of objects

may interact to produce a cause. Our formal framework can now handle several kinds of

data, including contingency data for single objects, contingency data for pairs of objects,

and perceptual features of the objects. In real-world settings, these different kinds of data

will often reinforce each other and combine to pick out a single set of categories. Here, how-

ever, we explore whether information about pairwise interactions alone is sufficient for

learners to discover causal schemata.

Experiment 4 used the same scenario developed for our previous experiments, but now

participants were able to place up to two blocks inside the machine. Unlike Experiments 1

through 3, the individual causal powers of the blocks were identical, and unlike Experiment

3, the blocks were perceptually indistinguishable. The blocks, however, belonged to catego-

ries, and these categories determined the pairwise interactions between blocks. In the

pairwise activation condition, the machine never activated when it contained a single block

or two blocks from the same category, but always activated whenever it contained one block

from each category (Fig. 18). In the pairwise inhibition condition the machine always

activated when it contained a single block or two blocks from the same category, but never

activated when it contained one block from each category. Experiment 4 explores whether

(A) (B)

o1+o2+o3

e0

e1

e2

o1+o2

o1 o2 e0

e1

e2

e3

o1 o2 o3

o2+o3o1+o3o1+o2

Fig. 19. The sequential interaction model of Novick and Cheng (2004). (A) Network for the case where two

objects may interact to influence an effect event e. Event ei indicates whether the effect would have occurred

based on interactions of up to i objects. For example, eo indicates whether the background cause is active, and e1

indicates whether the effect would have occurred as a result of combining the background cause with the causal

contributions of each object taken individually. Variable e2 indicates whether the effect event actually occurs

when the interaction between the two objects is taken into account. The black arrows are generative with

strength 1, and the gray arrows may or may not exist, may be generative or preventive, and may have any causal

strength. Once the status of each gray arrow is specified, all events in the network combine according to a noisy-

OR/noisy-AND-NOT model. (B) The same general approach can handle interactions among any number of

cause events. Shown here is a case where three objects may interact to influence an effect event. In this case, var-

iable e3 indicates whether the effect event actually occurs.
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participants could infer the underlying causal categories based on pairwise interactions

alone and could use this knowledge to rapidly learn causal models for novel objects.

Our experiment builds on the work of Kemp, Tenenbaum, Niyogi, and Griffiths (2010),

who demonstrated that people can use relationships between objects to organize these

objects into categories.3 These authors considered interactions between objects, but their

stimuli did not allow for the possibility that individual objects might produce the effect in

isolation. We therefore designed a new experiment that relies on the same scenario used in

Experiments 1 through 3.

9.1. Participants

Thirty-two members of the CMU community participated for pay or course credit.

9.2. Stimuli and design

Experiment 4 used the same graphical interface developed for Experiment 1. All of the

blocks were perceptually indistinguishable. The experiment included two conditions and

sixteen participants were assigned to each condition. In the pairwise activation condition,

the machine never activated on its own and never activated when it contained a single block.

The blocks, however, belonged to two categories, and the machine always activated on trials

when it contained an A-block and a B-block. In the pairwise inhibition condition, the

machine always activated when it contained a single block or two blocks from the same

category, but it always failed to activate when it contained two blocks from different

categories.

9.3. Procedure

The experiment was divided into several phases. During phase 0, participants observed

five trials where the empty machine failed to activate. Three blocks were added to the screen

at the start of phase 1. Unknown to the participants, two blocks were A-blocks (o1 and o2)

and the third was a B-block (o10). Participants observed four trials for each individual block,

and the machine never activated (pairwise activation condition) or always activated

(pairwise inhibition condition). Before observing any interactions, participants predicted

what would happen when o1 and o10 were simultaneously placed in the machine. The word-

ing of the question was taken from our previous experiments: Participants imagined 100 trials

when the machine contained the two blocks, and they rated the probability that the total num-

ber of activations would fall within each of five intervals. Participants then saw two trials for

each pair of blocks. Phase 1 finished with a period of ‘‘free experimentation,’’ where partici-

pants were given the opportunity to carry out as many of their own trials as they wished.

Phases 2 through 6 were identical in structure. In each phase, three new blocks were

added to the screen, and one of these blocks served as the ‘‘test block.’’ In some phases the

test block was an A-block, and in others the test block was a B-block. Before observing any

trials involving the new blocks, participants were given a pretest which required them to
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predict how the test block would interact with two of the blocks already on screen, one (o1)

from category cA and the other (o10) from category cB. Participants then observed a single

trial where the test block was paired with one of the blocks already on screen (the probe

block). Armed with this single piece of information, participants completed a posttest that

was identical to the pretest. The phase then finished with a period of free experimentation.

A complete specification of the design is shown in Table 1. The experiment involves 20

blocks in total: blocks o1 through o9 belong to category cA, blocks o10 through o18 belong to

category cB, and there are two test blocks in the final phase (oA and oB). The first and second

rows of Table 1 list the blocks that are added to the screen in each phase, and the block that

serves as the test block in each phase. Participants were randomly assigned to one of four

groups (i through iv), and the probe blocks used for each group are shown in the final four

rows of Table 1. No significant differences between these groups were observed, and we

will collapse across these groups when reporting our results.

The final phase was very similar to phases 2 through 6, but only two new blocks were

added to the screen. One block (oA) was an A-block, and the second (oB) was a B-block. In

phases 2 through 6 only one of the new blocks served as the test block, but in the final phase

both oA and oB served as test blocks. In the pretest for phase 7, participants made predictions

about how oA and oB would interact with o1 and o10 before observing any pairwise trials

involving the test blocks. Participants then observed a single trial involving each test block

and responded to a posttest that was identical to the pretest. After providing these predic-

tions, participants were asked to sort the blocks into two categories ‘‘according to their

effect on the machine’’ and to ‘‘describe how the blocks and machine work.’’

9.4. Model predictions

Although participants made inferences during each phase of the experiment, our main

question is whether they had learned a causal schema by the end of the experiment. We

therefore compare inferences about the first and last phases of the experiment. Kemp et al.

(2010) describe a very similar task and show learning curves that include data from all

phases of the experiment.

Table 1

Design for Experiment 4

Phase 1 2 3 4 5 6 7

Blocks added o1, o2, o10 o3, o11, o12 o4, o13, o14 o5, o6, o15 o7, o8, o16 o9, o17, o18 oA, oB

Test blocks o11 o4 o5 o16 o17 oA, oB

Probe blocks (i) o2 o12 o3 o15 o8 o11, o4

Probe blocks (ii) o2 o12 o3 o15 o8 o4, o11

Probe blocks (iii) o2 o12 o3 o6 o16 o11, o4

Probe blocks (iv) o2 o12 o3 o6 o16 o4, o11

Note. Blocks o1 through o9 belong to category cA and blocks o10 through o18 belong to category cB. In each

pretest and posttest, participants make predictions about interactions between the test block and o1 (an A-block)

and between the test block and o10 (a B-block). Between each pretest and posttest, participants observe a single

trial where the test block is paired with a probe block. Probe blocks for the four groups of participants are shown.
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Figs. 20A.i, B.i show predictions about a pair of blocks before any pairwise trials have

been observed. In the pairwise activation condition, the model has learned by this stage that

individual blocks tend not to produce the effect, and the default expectation captured by the

interaction model is that pairs of blocks will also fail to produce the effect. The model
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Fig. 20. Model predictions for Experiment 4. (A) Pairwise activation condition. (i) Before any pairwise trials

have been observed, the model predicts that pairs of objects are unlikely to activate the machine. (ii) Inferences

about test block oA. Before observing any trials involving this block, the model is uncertain about whether it will

activate the machine when paired with o1 or o10. After observing that oA activates the machine when paired with

o18 (a B-block), the model infers that oA will activate the machine when paired with o10 but not o1. (iii) Infer-

ences about test block oB show a similar pattern: The model is uncertain during the pretest, but one observation

involving oB is enough for it to make confident predictions on the posttest. (B) Pairwise inhibition condition.

The prediction in (i) and the posttest predictions in (ii) and (iii) are the opposite of the corresponding predictions

for the pairwise activation condition.
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allows for several possibilities: There may or may not be a conjunctive cause corresponding

to any given pair of blocks, and this conjunctive cause (if it exists) may be genera-

tive or preventive and may have high or low strength. Most of these possibilities lead

to the prediction that the pair of blocks will be unlikely to activate the machine. The

machine is only likely to activate if the pair of blocks corresponds to a conjunctive

cause with high strength, and this possibility receives a relatively low probability

compared to the combined probability assigned to all other possibilities. Similarly, in

the pairwise inhibition condition the model has learned that individual blocks tend to

produce the effect, and the default expectation captured by the interaction model is

that pairs of blocks will also produce the effect.

After observing several pairwise interactions, the model discovers that the default expec-

tation does not apply in all cases, and that some pairs of blocks activate the machine when

combined. By the final phase of the task, the model is confident that the blocks can be orga-

nized into two categories, where blocks o1 through o9 belong to category cA and blocks o10

through o18 belong to category cB. The model, however, is initially uncertain about the

category assignments of the two test blocks (blocks oA and oB) and cannot predict with

confidence whether either block will activate the machine when paired with o1 or o10

(Fig. 20ii–iii). Recall that the two categories have no distinguishing features, and that blocks

oA and oB cannot be categorized before observing how they interact with one or more previ-

ous blocks. After observing a single trial where oA is paired with one of the previous blocks,

the model infers that oA probably belongs to category A. In the pairwise activation condition,

the model therefore predicts that the pair {oA, o10} will probably activate the machine but

that the pair {oA, o1} will not (Fig. 20A.ii–iii). Similarly, in the pairwise activation condi-

tion, a single trial involving oB is enough for the model to infer that {oB, o1} will probably

activate the machine although the pair {oB, o10} will not.

9.5. Results

Figs. 21A.i, B.i show mean inferences about a pairwise interaction before any pairwise

trials have been observed. As expected, participants infer that two blocks which fail to acti-

vate the machine individually will fail to activate the machine when combined (pairwise

activation condition), and that two blocks which individually activate the machine will acti-

vate the machine when combined (pairwise inhibition condition). A pair of t tests indicates

that the 0.1 bar is significantly greater than the 0.9 bar in Fig. 21A.i (p < .001, one-sided)

but that the 0.9 bar is significantly greater than the 0.1 bar in Fig. 21B.i (p < .001, one-

sided). These findings are consistent with the idea that learners assume by default that

multiple causes will act independently of one another.

By the end of the experiment, participants were able to use a single trial involving a novel

block to infer how this block would interact with other previously observed blocks. The

mean responses in Fig. 21 match the predictions of our model and show that one-shot learn-

ing is possible even in a setting where any two blocks taken in isolation appear to have iden-

tical causal powers. A series of paired-sample t tests indicates that the difference between

the 0.1 and the 0.9 bars is not significant for any of the pretest plots in Fig. 21 (p > .3 in all
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cases), but the difference between these bars is significant for each posttest plot (p < .05 in

all cases). Although the model predictions are broadly consistent with our data, the model is

often extremely confident in cases where the mean human response appears to be a

U-shaped curve. In all of these cases, however, few individuals generate U-shaped curves,

and the U-shaped mean is a consequence of averaging over a majority of individuals who

match the model and a minority who generate curves that are skewed in the opposite

direction.

Responses to the sorting task provided further evidence that participants were able to dis-

cover a causal schema based on interaction data alone. In each condition, the most common

sort organized the 18 blocks into the two underlying categories. In the pairwise activation

condition, five of the 16 participants chose this response, and an additional three gave

responses that were within three moves of this solution. In the pairwise inhibition condition,
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Fig. 21. Data for Experiment 4. All inferences are qualitatively similar to the model predictions in Fig. 20.
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nine of the 16 participants chose this response, and an additional two gave responses that

were within three moves of this solution. The remaining sorts appeared to vary idiosyncrati-

cally, and no sort other than the most common response was chosen by more than one par-

ticipant. As in Experiment 3, the sorting task is relatively challenging, and participants who

did not organize the blocks as they went found it difficult to sort them into two categories at

the end of the experiment. Several participants gave explanations suggesting that they had

lost track of the observations they had seen.

Other explanations, however, suggested that some participants had discovered an explicit

causal schema. In the pairwise activation condition, one participant sorted the blocks into

categories that she called ‘‘activators’’ and ‘‘partners,’’ and wrote that ‘‘the machine

requires both an activator and a partner to work.’’ In the pairwise inhibition condition, one

participant wrote the following:

The machine appears to take two different types of blocks. Any individual block
turns on the machine, and any pair of blocks from the same group turns on the
machine. Pairing blocks from different groups does not turn on the machine.

An approach similar to the exemplar model described earlier will account for people’s

inferences about test blocks oA and oB. For example, if oA is observed to activate o18 in the

pairwise activation condition, the exemplar model will assume that oA is similar to other

blocks that have previously activated o18, and will therefore activate o11 but not o1. Note,

however, that the exemplar model assumes that learners have access to the observations

made for all previous blocks, and we propose that this information can only be maintained if

learners choose to sort the blocks into categories. The exemplar model also fails to explain

the results of the sorting task, and the explanations that mention an underlying set of catego-

ries. Finally, Experiment 2 of Kemp et al. (2010) considers causal interactions, and it was

specifically designed to compare approaches like the exemplar model with approaches that

discover categories. The results of this experiment rule out the exemplar model, but they are

consistent with the predictions of our schema-learning framework.

10. Children’s causal knowledge and its development

We proposed that humans learn to learn causal models by acquiring abstract causal sche-

mata, and our experiments confirm that adults are able to learn and use abstract causal

knowledge. Some of the most fundamental causal schemata, however, are probably acquired

early in childhood, and learning abstract schemata may itself be a key component of cogni-

tive development. Although our experiments focused on adult learning, this section shows

how our approach helps to account for children’s causal learning.

Our experiments explored three learning challenges: grouping objects into categories

with similar causal powers (Fig. 6 and Experiments 1 and 2), categorizing objects based on

their causal powers and their perceptual features (Fig. 14 and Experiment 3), and forming

categories to explain causal interactions between objects (Fig. 18 and Experiment 4). All
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three challenges have been explored in the developmental literature, and we consider each

one in turn.

10.1. Categories and causal powers

The developmental literature on causal learning includes many studies that address the

relationship between categorization and causal reasoning. Researchers have explored

whether children organize objects into categories with similar causal powers, and whether

their inferences rely more heavily on causal powers or perceptual features. Many studies

that address these questions have used the blicket detector paradigm (Gopnik & Sobel,

2000; Nazzi & Gopnik, 2000; Sobel, Sommerville, Travers, Blumenthal, & Stoddard,

2009), and we will show how our model accounts for several results that have emerged from

this paradigm.

In a typical blicket detector study, children are shown a set of blocks and a detector.

Some blocks are blickets and will activate the detector if placed on top of it. Other blocks

are inert and have no effect on the detector. Many questions can be asked using this setup,

but for now we consider the case where all blocks are perceptually identical and the task is

to organize these blocks into categories after observing their interactions with the detector.

Gopnik and Sobel (2000) and others have established that young children can accurately

infer whether a given block is a blicket given only a handful of relevant observations. For

example, suppose that the detector activates when two blocks (A and B) are simultaneously

placed on top of it, but fails to activate when A alone is placed on top of it. Given these out-

comes, 3-year-olds correctly infer that block B must be a blicket.

Our formal approach captures many of the core ideas that motivated the original blicket

detector studies, including the idea that objects have causal powers and the idea that objects

with similar causal powers are organized into categories. Our work also formalizes the rela-

tionship between object categories (e.g., categories of blocks) and event data (e.g., observa-

tions of interactions between blocks and the blicket detector). In particular, we propose that

children rely on an intermediate level of knowledge which specifies the causal powers of

individual objects, and that they understand that the outcome of a causal event depends on

the causal powers of the specific objects (e.g., blocks) involved in that event.

Several previous authors have presented Bayesian analyses of blicket-detector experi-

ments (Gopnik, Glymour, Sobel, Schulz, Kushnir, & Danks, 2004), and it is generally

accepted that the results of these experiments are consistent with a Bayesian approach. Typi-

cally, however, the Bayesian models considered do not incorporate all of the intuitions

about causal kinds that are captured by our framework. A standard approach used by Gopnik

et al. (2004) and others is to construct a Bayes net where there is a variable for each block

indicating whether it is on the detector, an additional variable indicating whether the detec-

tor activates, and an arrow from each block variable to the detector variable only if that

block is a blicket. This simple approach provides some insight but fails to capture key

aspects of knowledge about the blicket detector setting. For example, if the experimenter

introduces a new block and announces that it is a blicket, the network must be extended by

adding a new variable that indicates whether the new block is on the detector and by draw-
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ing an arrow between this new variable and the detector variable. Knowing how to modify

the network in this way is critical, but this knowledge is not captured by the original net-

work. More precisely, the original network does not explicitly capture the idea that blocks

can be organized into categories, and that there is a predictable relationship between the cat-

egory membership of a block and the outcome of events involving that block.

To address these limitations of a basic Bayes net approach, Danks (2007) and Griffiths and

Tenenbaum (2007) proposed formalisms that explicitly rely on distinct causal models for

blickets and nonblickets. Both of these approaches assume that all blickets have the same

causal strength, but our model is more flexible and allows objects in the same category to

have different causal strengths. For example, in the p ¼ {0, 0.5} condition of Experiment 1,

block o6 activates the machine 4 times out of 10 and block o7 activates the machine 6 times

out of 10. Our model infers that o7 has a greater causal strength than o6, and the means of the

strength distributions for these blocks are 0.49 and 0.56, respectively. Although the blocks

vary in strength, the model is 90% certain that the two belong to the same category. To our

knowledge, there are no developmental experiments that directly test whether children under-

stand that blocks in the same category can have different causal strengths. This prediction of

our model, however, is supported by two existing results. Kushnir and Gopnik (2005) found

that 4-year-olds track the causal strengths of individual blocks, and Gopnik, Sobel, Shulz,

and Glymour (2001) found that 3-year-olds will categorize two objects as blickets even if one

activates the machine more often (three of three trials) than the other (two of three trials).

Combining these results, it seems likely that 4-year-olds will understand that two objects

have different causal strengths but recognize that the two belong to the same category.

Although most blicket detector studies present children with only a single category of

interest (i.e., blickets), our model makes an additional prediction that children should be

able to reason about multiple categories. In particular, our model predicts that children will

distinguish between categories of objects that have similar causal powers but very different

causal strengths. Consider a setting, for example, where there are three kinds of objects:

blickets, wugs, and inert blocks. Each blicket activates the detector 100% of the time, and

each wug activates the detector between 20% and 30% of the time. Our model predicts

that young children will understand the difference between blickets and wugs, and will be

able to organize novel blocks into these categories after observing their effects on the

detector.

10.2. Categories, causal powers, and features

This section has focused so far on problems where the objects to be categorized are per-

ceptually identical, but real-world object categories often vary in their perceptual properties

as well as their causal powers. A central theme in the developmental literature is the rela-

tionship between perceptual categorization (i.e., categorization on the basis of perceptual

properties) and conceptual or theory-based categorization (i.e., categorization on the basis

of nonobservable causal or functional properties). Many researchers have compared these

two kinds of categorization and have explored how the tradeoff between the two varies with

age. One influential view proposes that infants initially form perceptual categories and only
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later come to recognize categories that rely on nonobservable causal properties. Keil (1989)

refers to this position as ‘‘Original Sim,’’ and he and others have explored its implications.

The blicket detector paradigm can be used to explore a simple version of the tradeoff

between perceptual and causal categorization. Gopnik and Sobel (2000) considered a con-

flict task where the blocks to be categorized had different perceptual features, and where

these perceptual features were not aligned with the causal powers of these blocks. One task

used four blocks, where two blocks activated the blicket detector but two did not (Fig. 22A).

Each block therefore had a causal match, and each block was also perceptually identical to

exactly one other block in the set. Crucially, however, the perceptual match and the causal

match for each block were different. Children were told that one of the blocks that activated

the detector was a blicket and were asked to pick out the other blicket. Consistent with the

‘‘Original Sim’’ thesis, 2-year-olds preferred the perceptual match. Three- and four-year-

olds relied more heavily on causal information and were equally likely to choose the

perceptual and the causal match. A subsequent study by Nazzi and Gopnik (2000) used a

similar task and found that 4.5-year-olds showed a small but reliable preference for the

causal match. Taken together, these results provide evidence for a developmental shift from

perceptual to causal categorization.
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Fig. 22. Modeling the shift from perceptual to causal categorization. (A) The four objects in the Gopnik and

Sobel (2000) conflict task. The two objects with the power to activate the blicket detector are marked with musi-

cal notes. Note that object o1 could be grouped with a causal match (o2) or a perceptual match (o3). The table

shows how the causal and perceptual data are provided as input to our model, and it includes a single feature f1
which indicates whether the objects are cubes or cylinders. (B) Our hierarchical Bayesian framework can be

extended to handle multiple systems of objects. Note that a single set of hyperparameters which specifies the

relative weights of causal (cc) and perceptual (cf) information is shared across all systems. Our model observes

how the objects in the first n ) 1 systems are organized into categories, and it learns that in each case the catego-

ries are better aligned with the causal observations than the feature data. The model must now infer how the

objects in the final system are organized into categories. (C) After learning that object o1 in the final system is a

blicket, the model infers whether o2 and o3 are likely to be blickets. Relative probabilities of these two outcomes

are shown. The curves show a shift from perceptual categorization (o3 preferred) to causal categorization

(o2 preferred).
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Unlike previous Bayes net models of blicket detector tasks, our approach can be applied

to problems like the conflict task where causal information and perceptual information are

both available. As demonstrated in our third experiment, a causal schema can specify infor-

mation about the appearance and the causal powers of the members of a given category, and

our schema learning model can exploit both kinds of information. In the conflict task of

Gopnik and Sobel (2000), the inference made by our model will depend on the relative

values of two hyperparameters: cc and cf, which specify the extent to which the blocks in

a given category are expected to have different causal powers (cc) and different features

(cf). For modeling our adult experiments we set cc to a smaller value than cf (cc ¼ 0.1 and

cf ¼ 0.5), which captures the idea that adults view causal information as a more reliable

guide to category membership than perceptual information. As initially configured, our

model therefore aims to capture causal knowledge at a stage after the perceptual to causal

shift has occurred.

A natural next step is to embed our model in a framework where the hyperparameters cc

and cf are learned from experience. The resulting approach is motivated by the idea that the

developmental shift from perceptual to causal categorization may be explained in part as a

consequence of rational statistical inference. Given exposure to many settings where causal

information provides a more reliable guide to category membership than perceptual infor-

mation, a child may learn to rely on causal information in future settings. To illustrate this

idea, we describe a simple simulation based on the Gopnik and Sobel (2000) conflict task.

Fig. 22B shows how our schema learning framework can be extended to handle multiple

systems of objects. We consider a simple setting where each system has two causal catego-

ries and up to six objects. Fig. 22B shows that the observations for the final test system are

consistent with the Gopnik and Sobel (2000) conflict task: objects o1 and o2 activate the

detector but the remaining objects do not, and object o1 is perceptually identical to o3 (both

have feature f1) but not o2 or o4. We assume that causal and feature data are available for

each previous system, that the category assignments for each previous system are observed,

and that these category assignments are always consistent with the causal data rather than

the feature data. Two of these previous systems are shown in Fig. 22B.

Fig. 22B indicates that the category assignments for the test system are unobserved, and

that the model must decide whether o1 is more likely to be grouped with o2 (the causal

match) or o3 (the perceptual match). If the test system is the first system observed (i.e., if

n ¼ 1), Fig. 22C shows that the model infers that the perceptual match (o3) is more likely to

be a blicket. Given experience with several systems, however, the model now infers that the

causal match (o2) is more likely to be a blicket.

The developmental shift in Fig. 22C is driven by the model’s ability to learn appropriate

values of the hyperparameters cc and cf given the first n ) 1 systems of objects. The hierar-

chy in Fig. 22B indicates that a single pair of hyperparameters is assumed to characterize all

systems, and the prior distribution used for each parameter is a uniform distribution over the

set {2)6,2)5,…,23}. Although the model begins with a symmetric prior over these hyper-

parameters, it initially prefers categories that match the features rather than the causal obser-

vations. The reason is captured by Fig. 3D, which indicates that the features are directly

generated from the underlying categories but that the event data are one step removed from
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these categories. The model assumes that causal powers rather than causal events are

directly generated from the categories, and it recognizes that a small set of event data may

not accurately reflect the causal powers of the objects involved. Given experience with sev-

eral previous systems, however, the model infers that cc is smaller than cf, and that causal

observations are a more reliable guide to category membership than perceptual features. A

similar kind of learning is discussed by Kemp et al. (2007), who describe a hierarchical

Bayesian model that learns that shape tends to be a more reliable guide to category member-

ship than other perceptual features such as texture and color.

The simulation results in Fig. 22C are based on a simple artificial scenario, and the pro-

posal that statistical inference can help to explain the perceptual to conceptual shift needs to

be explored in more naturalistic settings. Ultimately, however, this proposal may help to

resolve a notable puzzle in the developmental literature. Many researchers have discussed

the shift from perceptual to conceptual categorization, but Mandler (2004) writes that ‘‘no

one … has shown how generalization on the basis of physical appearance gets replaced by

more theory-based generalization’’ (p. 173). We have suggested that this shift might be

explained as a consequence of learning to learn, and that hierarchical Bayesian models like

the one we developed can help to explain how this kind of learning is achieved.

Although this section has focused on tradeoffs between perceptual and causal informa-

tion, in many cases children rely on both kinds of information when organizing objects into

categories. For example, children may learn that balloons and pins have characteristic fea-

tures (e.g., balloons are round and pins are small and sharp) and that there is a causal rela-

tionship between these categories (pins can pop balloons). Children must also combine

perceptual and causal information when acquiring the concept of animacy: Animate objects

have characteristic features, including eyes (Jones, Smith & Landau, 1991), but they also

share causal powers like the ability to initiate motion (Massey & Gelman, 1988). Under-

standing how concepts like animacy emerge over development is a challenging puzzle, but

models that combine both causal and perceptual information may contribute to the solution.

10.3. Causal interactions

Children make inferences about the causal powers of individual objects but also under-

stand how these causal powers combine when multiple objects act simultaneously. The origi-

nal blicket detector studies included demonstrations where multiple objects were placed on

the detector, and 4-year-olds correctly assumed that these interactions were consistent with

an OR function (i.e., that the detector would activate if one or more blickets were placed on

top of it). Consistent with these results, our model assumes by default that causal interactions

are governed by a noisy-OR function, but Experiment 4 demonstrates that both adults and our

model are able to learn about other kinds of interactions. Lucas and Griffiths (2010) present

additional evidence that adults can learn about a variety of different interactions, and future

studies can test the prediction that this ability is available relatively early in development.

Our modeling approach relies on the idea that causal interactions between individual

objects can be predicted using abstract laws that specify how categories of objects are

expected to interact. Recent work of Schulz, Goodman, Tenenbaum, and Jenkins (2008)
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supports the idea that young children can learn abstract laws, and they can do so on the basis

of a relatively small number of observations. These authors introduced preschoolers to a set

of seven blocks that included two red blocks, two yellow blocks, two blue blocks, and one

white block. Some pairs of blocks produced a sound whenever they came into contact—for

example, a train sound was produced whenever a red block and a blue block came into con-

tact, and a siren sound was produced whenever a yellow block and a blue block came into

contact (Fig. 23A). Other pairs of blocks produced no sound—for example, red blocks and

yellow blocks never produced a sound when paired. Here we consider two conditions that

differ only in the role played by the white block. In condition 1, the white block produced

the train sound when paired with a red block, but in condition 2 the white block produced

the train sound when paired with a blue block. No other observations involved the white

block—in particular, children never observed the white block come into contact with a

yellow block.

Using several dependent measures, Schulz and colleagues found that children in condi-

tion 1 expected the white block to produce the siren sound when paired with a yellow block,

but that children in condition 2 did not. Our model accounts for this result. The evidence in

condition 1 is consistent with the hypothesis that white blocks and blue blocks belong to the
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Fig. 23. (A) Evidence provided in conditions 1 and 2 of Schulz et al. (2008). (B) Model predictions about an

interaction between a yellow block and a white block. Like preschoolers, the model infers that this combination

is likely to produce a siren noise in condition 1 but not in condition 2. (C) Input data used to generate the model

prediction for condition 1. Each entry in the first matrix shows the number of times that two blocks were touched

and the number of times that the train sound was heard. For example, the red blocks came into contact twice,

and the train sound was produced on neither trial. The second matrix specifies information about the siren

sound, and the third matrix captures the perceptual features of the seven blocks. The input data for condition 2

are similar but not shown here.

C. Kemp, N. D. Goodman, J. B. Tenenbaum ⁄ Cognitive Science (2010) 45



same causal category—the category of WB blocks, say. Because the evidence suggests that

yellow blocks produce the siren sound when paired with WB blocks, our model infers that

the combination of a yellow block and a white block will probably produce the siren sound

(Fig. 23B). In condition 2, however, the evidence supports the hypothesis that white blocks

and red blocks belong to a category—the category of WR blocks. Because the evidence

suggests that WR blocks and yellow blocks produce no sound when paired, the model infers

that the combination of a yellow block and a white block will probably fail to produce the

siren sound. The input data used to generate the model predictions for condition 1 are shown

in Fig. 23C. The data include a matrix of observations for each effect (train sound and siren

sound) and a matrix of perceptual features that specifies the color of each block.

The result in Fig. 23B follows directly from the observation that white blocks are just like

blue blocks in condition 1, but that white blocks are just like red blocks in condition 2. This

observation may seem simple, but Schulz and colleagues point out that it cannot be captured

by the standard Bayes net approach to causal learning. The standard approach will learn a

Bayes net defined over variables that represent events, such as a contact event involving a

red block and a white block. The standard approach, however, has no basis for making pre-

dictions about novel events such as a contact event involving a yellow block and a white

block. Our model overcomes this limitation by learning categories of objects and recogniz-

ing that the outcome of a novel event can be predicted given information about the category

membership of the objects involved. The work of Schulz et al. suggests that young children

are also able to learn causal categories from interaction data and to use these categories to

make inferences about novel events.

We have now revisited three central themes addressed by our experiments—causal cate-

gorization, the tradeoff between causal and perceptual information, and causal inter-

actions—and showed how each one is grounded in the literature on cognitive development.

We described how our model can help to explain several empirical results, but future devel-

opmental experiments are needed to test our approach in more detail. Causal reasoning has

received a great deal of attention from the developmental community in recent years, but

there are still few studies that explore learning to learn. We hope that our approach will

stimulate further work in this area, and we expect in turn that future empirical results will

allow us to improve our approach as a model of children’s learning.

11. Discussion

This paper developed a computational model that can handle multiple inductive tasks,

and that learns rapidly about later tasks given experience with previous tasks from the same

family. Our approach is motivated by the idea that learning to learn can be achieved by

acquiring abstract knowledge that is relevant to all of the inductive tasks within a given fam-

ily. A hierarchical Bayesian approach helps to explain how abstract knowledge can be

learned after experience with the first few tasks in a family, and how this knowledge can

guide subsequent learning. We illustrated this idea by developing a hierarchical Bayesian

model of causal learning.
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The model we described includes representations at several levels of abstraction. Near

the top of the hierarchy is a schema that organizes objects into categories and specifies the

causal powers and characteristic features of these categories. We showed that schemata of

this kind support top-down learning and capture background knowledge that is useful when

learning causal models for sparsely observed objects. Our model, however, also supports

bottom-up learning, and we showed how causal schemata can be learned given perceptual

features and contingency data.

Our experiments suggest that our model matches the abilities of human learners in several

respects. Experiment 1 explored one-shot causal learning and suggested that people learn

schemata which support confident inferences given very sparse data about a new object.

Experiment 2 explored a case where people learn a causal model for an object that is quali-

tatively different from all previous objects. Strong inductive constraints are critical when

data are sparse, but Experiment 2 showed that people (and our model) can overrule these

constraints when necessary. Experiment 3 focused on ‘‘zero-shot causal learning’’ and

showed that people make inferences about the causal powers of an object based purely on

its perceptual features. Experiment 4 suggested that people form categories that are distin-

guished only by their causal interactions with other categories.

Our experiments used two general strategies to test the psychological reality of the hierar-

chy used by our model. One strategy focused on inferences at the bottom level of the hierar-

chy. Experiments 1, 3, and 4 considered one-shot or zero-shot causal learning and suggested

that the upper levels of the model explain how people make confident inferences given very

sparse data about a new object. A second strategy is to directly probe what people learn at

the upper levels of the hierarchy. Experiments 3 and 4 asked participants to sort objects into

categories, and the resulting sorts provide evidence about the representations captured by

the schema level of our hierarchical model. A final strategy that we did not explore is to

directly provide participants with information about the upper levels of the hierarchy, and to

test whether this information guides subsequent inferences. Consider, for instance, the case

of a science student who is told that ‘‘pineapple juice is an acid, and acids turn litmus paper

red.’’ When participants are sensitive to abstract statements of this sort, we have additional

evidence that their mental representations capture some of the same information as the hier-

archies used by our model.

11.1. Related models

Our work is related to three general areas that have been explored by previous research-

ers: causal learning, categorization, and learning to learn. This section compares our

approach to some of the formal models that have been developed in each area.

11.1.1.Learning to learn
The hierarchical Bayesian approach provides a general framework for explaining learning

to learn, and it has been explored by researchers from several communities. Statisticians and

machine learning researchers have explored the theoretical properties of hierarchical Bayes-

ian models (Baxter, 1998) and have applied them to challenging real-world problems (Blei,

C. Kemp, N. D. Goodman, J. B. Tenenbaum ⁄ Cognitive Science (2010) 47



Ng, & Jordan, 2003; Gelman, Carlin, Stern, & Rubin, 2003; Good, 1980). Psychologists

have suggested that these models can help to explain human learning, and they have used

them to explore how children learn to learn words (Kemp et al., 2007) and feature-based

categories (Perfors & Tenenbaum, 2009).

Our work is motivated by many of the same general considerations as these previous

approaches, but it represents one of the first attempts to explore learning to learn in a causal

context. Our work also helps to demonstrate the flexibility of the hierarchical Bayesian

approach to learning. Previous hierarchical approaches in the psychological literature often

use hierarchies where the knowledge at the top level is very simple—for example, where

this knowledge is captured by one or two parameters (Kemp et al., 2007). Our work illus-

trates that the same basic approach can explain how richer kinds of abstract knowledge can

be acquired. We showed, for example, how causal schemata can be learned, where each

schema is a system that includes causal categories along with category-level causal models

that specify causal relationships between these categories.

11.1.2. Causal learning
Although there are few accounts of learning to learn in a causal setting, there are many

previous models of causal learning and reasoning. Like many of these models (Gopnik &

Glymour, 2002; Griffiths & Tenenbaum, 2005; Pearl, 2000), our work uses Bayesian net-

works to capture causal knowledge. For example, each object-level causal model in our

framework is formalized as a causal Bayesian network. Note, however, that our approach

depends critically on a level of representation that is more abstract than causal networks.

We suggest that human inferences rely on causal schemata or systems of knowledge that

capture expectations about object-level causal models.

11.1.3. Categorization
A causal schema groups a set of objects into categories, and our account of schema learn-

ing builds on two previous models of categorization. Our approach assumes that the cate-

gory assignments of two objects will predict how they relate to each other, and the same

basic assumption is made by the infinite relational model (Kemp et al., 2006), a probabilistic

approach that organizes objects into categories that relate to each other in predictable ways.

We also assume that objects belonging to the same category will tend to have similar fea-

tures, and we formalize this assumption using the same probabilistic machinery that lies at

the heart of Anderson’s rational approach to categorization (Anderson, 1991). Our model

can therefore be viewed as an approach that combines these two accounts of categorization

with a Bayesian network account of causal reasoning. Because all of these accounts work

with probabilities, it is straightforward to bring them together and create a single integrated

framework for causal reasoning.

11.1.4. Categorization and causal learning
Previous authors have studied the relationship between categorization and causal rea-

soning (Waldmann & Hagmayer, 2006), and Lien and Cheng (2000) present a formal

model that combines these two aspects of cognition. These authors consider a setting
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similar to our third experiment where learners must combine contingency data and

perceptual features to make inferences about sparsely observed objects. Their approach

assumes that the objects of interest can be organized into one or more hierarchies, and

that there are perceptual features which pick out each level in each hierarchy. Each

perceptual feature is assumed to be a potential cause of effect e, and the probabilistic
contrast for each cause c with respect to the effect is P(e+ j c+) ) P(e+ j c)). Lien and

Cheng suggest that the best explanation of the effect is the cause with maximal probabi-

listic contrast.

Although related to our own approach, the theoretical problem addressed by the principle

of maximal contrast is different from the problem of discovering causal schemata. In our

terms, Lien and Cheng assume that a learner already knows about several overlapping cate-

gories, where each category corresponds to a subtree of one of the hierarchies. They do not

discuss how these categories might be discovered in the first place, but they provide a

method for identifying the category that best explains a novel causal relation. We have

focused on a different problem: Our schema-learning model does not assume that the

underlying categories are known in advance, but it shows how a single set of nonoverlap-

ping categories can be discovered.

Our work goes beyond the Lien and Cheng approach in several respects. Our model

accounts for the results of Experiments 1, 2, and 4, which suggest that people organize

perceptually identical objects into causal categories. In contrast, the Lien and Cheng model

has no way to address problems where all objects are perceptually identical. In their own

experiments, Lien and Cheng apply their model to several problems where causal informa-

tion and perceptual features are both available, and where a subset of the perceptual fea-

tures pick out the underlying causal categories. Experiment 3, however, exposes a second

important difference between our model and their approach. Our model handles cases like

Fig. 14 where the features provide a noisy indication of the underlying causal categories,

but the Lien and Cheng approach can only handle causal categories that correlate perfectly

with a perceptual feature. Experiment 3 supports our approach by demonstrating that peo-

ple can discover categories in settings where perceptual features correlate roughly with the

underlying categories, but where there is no single feature that perfectly distinguishes

these categories.

Although the Lien and Cheng model will not account for the results of any of our

experiments, it goes beyond our work in one important respect. Lien and Cheng suggest

that potential causes can be organized into hierarchies—for example, ‘‘eating cheese’’ is

an instance of ‘‘eating dairy products’’ which in turn is an instance of ‘‘eating animal

products.’’ Different causal relationships are best described at different levels of these

hierarchies—for example, a certain allergy might be caused by ‘‘eating dairy products,’’

and a vegan may feel sick at the thought of ‘‘eating animal products.’’ Our model does

not incorporate the notion of a causal hierarchy—objects are grouped into categories, but

these categories are not grouped into higher-level categories. As described in the next

section, however, it should be possible to develop extensions of our approach where

object-level causal models and features are generated over a hierarchy rather than a flat set

of categories.
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11.2. Learning and prior knowledge

Any inductive learner must rely on prior knowledge of some kind and our model is no

exception. This section highlights the prior knowledge assumed by our approach and dis-

cusses where this knowledge might come from. Understanding the knowledge assumed by

our framework is especially important when considering its developmental implications.

The ultimate goal should be to situate our approach in a developmental sequence that helps

to explain the origin of each of its components, and we sketch some initial steps towards this

goal.

The five shaded nodes in Fig. 3D capture much of the knowledge assumed by our

approach. Consider first the nodes that represent domains (e.g., people) and events (e.g.,

ingests(Æ,Æ)). Domains can be viewed as categories in their own right, and these categories

might emerge as the outcome of prior learning. For example, our approach could help to

explain how a learner organizes the domain of physical objects into animate and inanimate

objects, and how the domain of animate objects is organized into categories like people and

animals. As these examples suggest, future extensions of our approach should work with

hierarchies of categories and explore how these hierarchies are learned. It may be possible,

for example, to develop a model that starts with a single, general category (e.g., physical

objects) and that eventually develops a hierarchy which indicates that people are animate

objects and that animate objects are physical objects. There are several probabilistic

approaches that work with hierarchies of categories (Kemp, Griffiths, Stromsten, & Tenen-

baum, 2004; Kemp & Tenenbaum, 2008; Schmidt, Kemp, & Tenenbaum, 2006), and it

should be relatively straightforward to combine one of these approaches with our causal

framework.

Although our model helps to explain how categories of objects are learned, it does not

explain how categories of events might emerge. There are several probabilistic approaches

that explore how event categories could be learned (Buchsbaum, Griffiths, Gopnik, &

Baldwin, 2009; Goodman, Mansinghka, & Tenenbaum, 2007), and it may be possible to

combine these approaches with our framework. Ultimately researchers should aim for

models that can learn hierarchies of event categories—for example, touching is a kind of

physical contact, and physical contact is a kind of event.

The third shaded node at the top of Fig. 3D represents a domain-level problem. Our

framework takes this problem for granted but could potentially learn which problems cap-

ture possible causal relationships. Given a set of domains and events, the learner could

consider a hypothesis space that includes all domain-level problems constructed from these

elements, and the learner could identify the problems that seem most consistent with the

available data. Different domain-level problems may make different assumptions about

which events are causes and which are effects, and intervention data and temporal data are

likely to be especially useful for resolving this issue: Effect events can be changed by

intervening on cause effects, but not vice versa, and event effects usually occur some time

after cause effects.

In many cases, however, the domain-level problem will not need to be learned from data,

but will be generated by inheritance over a hierarchy of events and a hierarchy of domains.
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For example, suppose that a learner has formulated a domain-level problem which recog-

nizes that acting on a physical object can affect the state of that object:

actionðphysical object 1; physical object 2Þ!? stateðphysical object 2Þ

If the learner knows that a touching is an action, that people and toys are both physical

objects, and that emitting sound is a state, then the learner can use domain and event inheri-

tance to formulate a domain-level problem which recognizes that humans can make toys

emit sound by touching them:

touchðperson; toyÞ!? emits soundðtoyÞ

A domain-level problem identifies a causal relationship that might exist, but additional

evidence is needed to learn a model which specifies whether this relationship exists in real-

ity. The distinction between domain-level problems and causal models is therefore directly

analogous to the distinction between possibility statements (this toy could be made out of

wood) and truth statements (this toy is actually made out of plastic). Previous authors have

suggested that possibility statements are generated by inheritance over ontological hierar-

chies (Keil, 1979; Sommers, 1963), and that these hierarchies can be learned (Schmidt et al.,

2006). Our suggestions about the origins of domain-level problems are consistent with these

previous proposals.

The final two shaded nodes in Fig. 3D represent the event and feature data that are pro-

vided as input to our framework. Like most other models, our current framework takes these

inputs for granted, but it is far from clear how a learner might convert raw sensory input into

a collection of events and features. We can begin to address this question by adding an addi-

tional level at the bottom of our hierarchical Bayesian model. The information observed at

this level might correspond to sensory primitives, and a learner given these observations

might be able to identify the events and features that our current approach takes for granted.

Goodman et al. (2007) and Austerweil and Griffiths (2009) describe probabilistic models

that discover events and features given low-level perceptual primitives, and the same

general approach could be combined with our framework.

Even if a learner can extract events and features from the flux of sensory experience, there

is still the challenge of deciding which of these events and features are relevant to the problem

at hand. We minimized this challenge in our experiments by exposing our participants to sim-

ple settings where the relevant features and events were obvious. Future analyses can con-

sider problems where many features and events are available, some of which are consistent

with an underlying causal schema, but most of which are noisy. Machine learning researchers

have developed probabilistic methods for feature selection that learn a weight for each feature

and are able to distinguish between features that carry useful information and those that are

effectively random (George & McCulloch, 1993; Neal, 1996). It should be possible to com-

bine these methods with our framework, and the resulting model may help to explain how

children and adults extract causal information from settings that are noisy and complex.
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We have now discussed how several components of the framework in Fig. 3D could be

learned rather than specified in advance. Although our model could be extended in several

directions, note that there are fundamental questions about the origins of causal knowledge

that it does not address. For example, our model suggests how a schema learner might dis-

cover the schema that accounts best for a given domain, but it does not explain how a lear-

ner might develop the ability to think about schemata in the first place. Similarly, our model

can learn about the causal powers of novel objects, but it does not explain how a precausal

learner might develop the ability to think about causal powers. There are two possible

solutions to developmental questions like these: Either concepts like causal schema and cau-

sal power could be innate, or one or both of these concepts could emerge as a consequence

of early learning. Our work is compatible with both possible solutions, and future modeling

efforts may help to suggest which of the two is closer to the truth.

12. Conclusion

We developed a hierarchical Bayesian framework that addresses the problem of learning

to learn. Given experience with the causal powers of an initial set of objects, our framework

helps to explain how learners rapidly learn causal models for subsequent objects from the

same family. Our approach relies on the acquisition and use of causal schemata, or systems

of abstract causal knowledge. A causal schema organizes a set of objects into categories and

specifies the causal powers and characteristic features of each categories. Once acquired,

these causal schemata support rapid top-down inferences about the causal powers of novel

objects.

Although we focused on causal learning, the hierarchical Bayesian approach can help to

explain learning to learn in other domains, including word learning, visual learning, and

social learning. The hierarchical Bayesian approach accommodates both abstract knowledge

and learning, and it provides a convenient framework for exploring two fundamental ques-

tions about cognitive development: how abstract knowledge is acquired, and how this

knowledge is used to support subsequent learning. Answers to both questions should help to

explain how learning accelerates over the course of cognitive development, and how this

accelerated learning can bridge the gap between knowledge in infancy and adulthood.

Notes

1. We will assume that g and s are defined even if a ¼ 0 and there is no causal relation-

ship between o and e. When a ¼ 0, g and s could be interpreted as the polarity and

strength that the causal relationship between o and e would have if this relationship

actually existed. Assuming that g and s are always defined, however, is primarily a

mathematical convenience.

2. Unlike Experiment 1, the background rate is nonzero, and these probability distribu-

tions are not equivalent to distributions on the causal power of a test block.
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3. In particular, the pairwise activation condition of Experiment 4 is closely related to the

symmetric regular condition described by Kemp et al. (2010).
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Appendix: A schema learning model

This appendix describes some of the mathematical details needed to specify our schema-

learning framework in full.

Learning a single object-level causal model

Consider first the problem of learning a causal model that captures the relationship

between a cause event and an effect event. We characterize this relationship using four

parameters. Parameters a, g, and s indicate whether a causal relationship exists, whether it is

generative, and the strength of this relationship. We assume that there is a generative back-

ground cause of strength b.

We place uniform priors on a and g, and we assume that the strength parameter s is drawn

from a logistic normal distribution:

logitðsÞ �Nðl;r2Þ
l �Nðg; sr2Þ

r2 � Inv-gammaða;bÞ
ð11Þ

The priors on l and r2 are chosen to be conjugate to the Gaussian distribution on logit(s),

and we set a ¼ 2, b ¼ 0.3, g ¼ 1, and s ¼ 10. The background strength b is drawn from

the same distribution as s, and all hyperparameters are set to the same values except for g
which is set to )1. Setting g to these different values encourages b to be small and s to be

large, which matches standard expectations about the likely values of these variables (Lu

et al., 2008). As for all other hyperparameters in our model, a ¼ 2, b ¼ 0.3, g ¼ 1, and

s ¼ 10 were not tuned to fit our experimental results but were assigned to values that

seemed plausible a priori. We expect that the qualitative predictions of our model are rela-

tively insensitive to the precise values of these hyperparameters provided that they capture

the expectation that b should be small and s should be large.

Learning multiple object-level causal models

Consider now the problem of simultaneously learning multiple object-level models.

The example in Fig. 1A includes two sets of objects (people and drugs), but we

initially consider the case where there is just one person and we are interested in

problems like
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ingestsðAlice; DoxazosinÞ!? headacheðAliceÞ

ingestsðAlice; PrazosinÞ!?
..
.
headacheðAliceÞ

which concern the effects of different drugs on Alice.

As described in the main text, our model organizes the drugs into categories and assumes

that the object-level model for each drug is generated from a corresponding causal model at

the category level. Our prior P(z) on category assignments is induced by the Chinese Res-

taurant Process (CRP, Aldous, 1985). Imagine building a partition by starting with a single

category including a single object, and adding objects one by one until every object is

assigned to a category. Under the CRP, each category attracts new members in proportion to

its size, and there is some probability that a new object will be assigned to a new category.

The distribution over categories for object i, conditioned on the category assignments for

objects 1 through i ) 1 is

Pðzi ¼ a j z1; . . . ; zi�1Þ ¼
na

i�1þc ; na > 0
c

i�1þc ; a is a new category

�
ð12Þ

where zi is the category assignment for object i, na is the number of objects previously

assigned to category a, and c is a hyperparameter (we set c ¼ 0.5). Because the CRP prefers

to assign objects to categories which already have many members, the resulting prior P(z)

favors partitions that use a small number of categories.

When learning causal models for multiple objects, the parameters for each model

can be organized into three vectors a, g, and s. Let W be the tuple (a, g, s, b) which

includes all of these parameters along with the background strength b. Similarly, let �W
be the tuple (�a, �g, �s, �bÞ that specifies the parameters of the causal-models at the cate-

gory level.

Our prior Pð �WÞ assumes that the entries in �a and �g are independently drawn from a

Beta(cc,cc) distribution. Unless mentioned otherwise, we set cc ¼ 0.1 in all cases. Each

entry in �s is a pair that specifies a mean l and a variance r2. We assume that these means

and variances are independently drawn from the conjugate prior in Eq. 11 where g ¼ 1. The

remaining parameter �b is a pair that specifies the mean and variance of the distribution that

generates the background strength b. We assume that �b is drawn from the conjugate prior

specified by Eq. 11 where g ¼ )1.

Suppose now that we are working in a setting (Fig. 1A) that includes two sets of

objects—people and drugs. We introduce partitions zpeople and zdrugs for both sets, and we

place independent CRP priors on both partitions. We introduce a category-level causal

model for each combination of a person category and a drug category, and we assume that

each object-level causal model is generated from the corresponding category-level

model. As before, we assume that the category-level parameters �a, �g, and �s are generated

independently for each category-level model. The same general strategy holds when work-

ing with problems that involve three or more sets of objects. We assume that each set is

organized into a partition drawn from a CRP prior, introduce category level models for each
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combination of categories, and assume that the parameters for these category-level models

are independently generated from the distributions already described.

Features

To apply Eq. 8 we need to specify a prior distribution Pð �FÞ on the feature matrix �F. We

assume that all entries in the matrix are independent draws from a Beta(cf,cf) distribution.

Unless mentioned otherwise, we set cf ¼ 0.5 in all cases. Our feature model is closely

related to the Beta-Bernoulli model used by statisticians (Gelman et al., 2003) and is appro-

priate for problems where the features are binary. Some features, however, are categorical

(i.e., they can take many discrete values), and others are continuous. Our approach can han-

dle both cases by replacing the Beta-Bernoulli component with a Dirichlet-multinomial

model, or a Gaussian model with conjugate prior.

Inference

Our model can be used to learn a schema (top level of Fig. 1), to learn a set of object-

level causal models (middle level of Fig. 1), or to make predictions about future events

involving a set of objects (bottom level of Fig. 1). All three kinds of inferences can be

carried out using a Markov chain Monte Carlo (MCMC) sampler. Because we use conjugate

priors on the model parameters at the category level ( �W and �F), it is straightforward to inte-

grate out these parameters and sample directly from P(z,WjV). To sample the schema assign-

ments in z, we combined Gibbs updates with the split-merge scheme described by Jain and

Neal (2004). We used Metropolis-Hasting updates on the parameters W of the object-level

models and found that mixing improved when the three parameters for a given object i (ai,

gi and si) were updated simultaneously. To further facilitate mixing, we used Metropolis-

coupled MCMC: We ran several Markov chains at different temperatures and regularly

considered swaps between the chains (Geyer, 1991).

We evaluated our model by comparing two kinds of distributions against human

responses. Figs. 8, 10, 16, and 20 show posterior distributions over the activation strength

of a given block, and Fig. 17 shows a posterior distribution over category assignments. In

all cases except Fig. 20ii,iii we computed model predictions by drawing a bag of MCMC

samples from P(z,W j V,F). We found that our sampler did not mix well when directly

applied to the setting in Experiment 4 and therefore used importance sampling to generate

the predictions in Fig. 20ii,iii. Let a partition z be plausible if it assigns objects o1

through o9 to the same category and o10 through o18 to the same category. There are 15

plausible partitions, and we define a distribution P1(Æ) that is uniform over these parti-

tions:

P1ðzÞ ¼
1
15 ; if z is plausible
0; otherwise

�
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For each plausible partition z we used a separate MCMC run to draw 20,000 samples

from P(W j V,z). When aggregated, these results can be treated as a single large sample

from a distribution q(z,W) where

qðz;WÞ / PðW jV; zÞP1ðzÞ:

We generated model predictions for Fig. 20ii,iii using q(Æ,Æ) as an importance sampling

distribution. The importance weights required take the form P(z)P(V j z), where P(z) is

induced by Eq. 12 and P(V j z) ¼ �P(VjW,z)P(W j z)dW can be computed using a simple

Monte Carlo approximation for each plausible z.
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