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Abstract

Inductive inferences about objects, properties, categories, re-
lations, and labels have been studied for many years but there
are few attempts to chart the range of inductive problems that
humans are able to solve. We present a taxonomy that includes
more than thirty inductive problems. The taxonomy helps to
clarify the relationships between familiar problems such as
identification, stimulus generalization, and categorization, and
introduces several novel problems including property identifi-
cation and object discovery.
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Attempts to systematize knowledge have proven useful in

several fields. Mendeleev presented a periodic table of the

chemical elements that helped to clarify relationships be-

tween known elements and that made predictions about the

existence of new elements. Adelson and Bergen [1] devel-

oped a “periodic table” of early vision that maps out a space

of visual computations and identifies several that had previ-

ously received little attention. This paper aims to make a sim-

ilar contribution to the study of inductive inference. We de-

scribe a taxonomy of inductive problems that aims to clarify

the relationships between different problems and to highlight

problems that have previously been overlooked.

An inductive inference goes beyond the information given

and reaches a conclusion that is likely but not certain given

the available evidence. Inferences of this kind are relevant to

almost every area of cognition, and take place, for example,

when humans predict the motion of an occluded object, guess

the meaning of a novel word, or decide how to grasp an object

that is encountered for the first time. We will not discuss vi-

sion, language, or motor control, but instead focus on a cluster

of problems from an area that has been called semantic cog-

nition. Research in this area aims to capture knowledge about

objects and their properties, categories or collections of ob-

jects, relationships between objects, and word meanings. The

relevant literature includes studies of property induction [7],

categorization (both supervised [12] and unsupervised [2]),

stimulus generalization [15], identification [12], and word

learning [17].

Accounts of semantic cognition differ in many respects but

most of them rely on six basic notions: objects, properties,

categories, relations, labels, and truth values. Our taxonomy

takes these six notions as a starting point and attempts to chart

the space of inductive problems that can be posed given a

commitment to these notions. Two familiar problems that be-

long to this space are categorization and property induction,

or deciding whether an object has an unobserved property.

Most psychological work on inductive inference focuses on

a single inductive problem, but some existing frameworks ad-

dress multiple problems [7]. For example, exemplar models

that formalize objects as points in a multidimensional space

have been used to account for several problems including

identification, stimulus generalization, recognition, and cat-

egorization [13]. Our taxonomy includes all of these prob-

lems along with many others. Since we aim to characterize

inductive problems rather than to describe the psychological

mechanisms that allow them to be solved, we hope that our

taxonomy will be useful to researchers from many different

traditions, including modelers who pursue probabilistic, log-

ical, or connectionist approaches. The taxonomy we describe

can serve as a guide for future work, and future models and

experiments can address the problems that it contains.

A semantic repository

Our approach proposes that semantic knowledge can be cap-

tured in terms of objects, relations, labels and truth-values.

Our goal is to characterize all inductive problems that can be

formulated in terms of these notions.

We assume that knowledge about objects, relations and la-

bels can be organized into a semantic repository. Let O be

a set of objects, L be a set of labels, and T be the set {1, 0}
that includes two truth values. For most cases that we con-

sider, set O will include individuals such as dogs, people, and

chairs, and set L will include strings of phonemes such as

“Fido,” “dog,” and “brown.” Here we discuss a running ex-

ample where O and L include the four people and the seven

labels shown in Figure 1.

Sets O, L and T correspond to primitive types, and rela-

tions are constructed out of these types. Any property can be

formalized as a unary relation r : O → T that assigns a truth

value (1 or 0) to each object depending on whether it has the

property. Figure 1 shows a property r1(·) that includes three

of the four objects and can be glossed as bearded(·). A cat-

egory can also be formalized as a unary relation r : O → T

where the truth values now indicate whether a given object

belongs to the category. Figure 1 shows a category r2(·)
that can be glossed as Sikh(·). Binary relations of the form

r : O × O → T assign a truth value to each pair of objects.

In Figure 1, for example, relation r3(·, ·) can be glossed as

parent(·, ·), and assigns value 1 to all pairs (oi, oj) such that

oi is the parent of oj . Relations with three or more places can

also be considered, but here we focus on unary and binary

relations.

Both objects and relations can be associated with labels.

Object labels can be captured by a relation r : O×L → T that

indicates for each pair (oi, lj) whether lj is a label of object

oi. Figure 1 shows, for example, that each of the four objects

in the repository has a unique label. Labels for the unary
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Figure 1: A small semantic repository that includes six rela-

tions with the types shown in Table 1. The set of relations

includes unary relations that can be glossed as bearded(·) and

Sikh(·), a binary relation that can be glossed as parent(·, ·),
and three name(·, ·) relations that specify labels of the ob-

jects, the unary relations, and the binary relation.

Type Description

r : O → T property

r : O → T category

r : O × O → T binary relation

n : O × L → T object labels

n : (r : O → T ) × L → T property/category labels

n : (r : O × O → T ) × L → T binary relation labels

Table 1: Six examples of the many kinds of relations that can

appear in the semantic repository. Each relation is built from

the three primitive types (O, L and T ). Examples of each

kind of relation are shown in Figure 1.

relations are captured by a relation n : (r : O → T )×L → T ,

and labels for the binary relations are captured by a relation

n : (r : O×O → T )×L → T . The three name(·, ·) relations

in Figure 1 have different types and are therefore distinct, but

we will overload our notation and use name(·, ·) to refer to

each of them.

A semantic repository captures what is true about the

world. A very general problem faced by humans is to make

inferences about the contents of this repository given par-

tial and noisy data. This paper discusses three instances

of this general problem. We first consider two problems—

generalization and discovery—that arise when the available

data specify a partially observed repository Robs. We then

consider a third problem—identification—that arises when

the available data specify information about object and re-

lation tokens, and the reasoner may be unsure whether two

tokens correspond to the same relation or object. The three

problems we consider are captured by the hierarchical frame-

work in Figure 2. The ultimate goal of the reasoner is to re-

cover the repository R at the top of the hierarchy, and this

repository must be inferred given a partially observed reposi-

tory Robs or given token data T that form an incomplete spec-

ification of a partially observed repository.

repository

True

data

Token
1 ? 1 0 ?
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0 ? 0 1 ?
? ? ? ? 1
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Figure 2: A hierarchical framework for specifying inductive

problems. Semantic repository R contains information about

objects (oi) and relations (rj) and can be formalized as a list

of statements. Robs is a partially observed version of R. The

token data T are an incomplete specification of Robs that in-

clude information about object tokens (o∗i ) and relation tokens

(r∗j ) and identity relations over these tokens. If the identity re-

lations Io and Ir are fully observed, then T and Robs will be

equivalent. Note, however, that the identity relations are typ-

ically partially observed, reflecting uncertainty about which

tokens correspond to the same relation or object.

Generalization

Suppose first that a reasoner is given a partially observed

repository Robs—for example, a version of Figure 1 where

one or more of the entries are replaced by question marks.

Generalization is the problem of making inferences about

these unobserved entries. A partially observed repository can

be represented as a list of statements like the examples in Fig-

ures 2 and 3a. Given these statements as input, generalization

can be formalized as the problem of deciding whether or not a

new statement is true. In Figure 3a, for example, the reasoner

must decide whether r2(o3) = 1 or r2(o3) = 0.

At least two special cases of the problem of generalization

can be distinguished. Object generalization can be defined as

the problem of making inferences about a sparsely observed

object. Suppose, for instance, that you meet a new person

and observe only some of his properties and relationships

with others. Making inferences about this new acquaintance

is an example of object generalization. Relation generaliza-

tion can be defined as the problem of making inferences about

a sparsely observed relation. Suppose, for instance, that you

learn about a new property (e.g. carries the T4 gene) or a new

category (e.g. mesomorph), and observe a single instance of

a person with the property or category. Deciding which other

people have the property or belong to the category is an ex-

ample of relation generalization.

As characterized here, the problem of generalization in-

cludes several problems that go by different names in the psy-

chological literature. Stimulus generalization and property

induction are two prominent examples—the first is similar to



object generalization, and the second to relation generaliza-

tion. Categorization or classification is a third problem that

falls under the heading of relation generalization. Since we

formalize a category as a unary relation, reasoning about the

extension of a novel category reduces to the problem of rela-

tion generalization.

Discovery

One family of generalization problems includes cases where

the partially-observed repository Robs includes all objects

and relations of interest and the inductive challenge is to in-

fer statements about these relations and objects that are true

but unobserved. A second family includes cases where some

objects or relations are not mentioned at all in Robs. Note,

for example, that Robs in Figure 2 does not mention relation

r2(·) or objects o3 and o4. Discovery is the problem of infer-

ring the existence of an object or relation that has not been

observed.

The problem of relation discovery has received some at-

tention in the psychological literature. In one version of the

problem, the relations to be discovered are unary relations

that specify the category assignments of a set of objects. The

problem of discovering these categories is sometimes known

as unsupervised categorization. We previously suggested, for

example, that a learner might group Sikhs into a category

(r2(·) in Figure 2) without being taught about the existence

of this category. To give a second example, the first European

explorers to visit Australia were able to organize the animals

they saw into categories without needing a teacher to provide

category labels. Further examples of relation discovery can

be found in the literature on theory learning [9] and inductive

logic programming [16]. One common idea is that learners

should search for a short description of the observations they

have made, and this shortest description will sometimes rely

on relations that have not been observed but that help to ex-

plain the available data. For example, if Alice and Bob both

simultaneously come down with a rare illness, we may infer

that the two have recently come into contact.

The problem of object discovery involves inferences about

the existence of objects that have not been observed. Given

the partially observed repository Robs in Figure 2, for exam-

ple, a reasoner may infer that Arjun had parents (one of whom

is o3), and that properties of these individuals can help to ex-

plain some of the properties of Arjun. Scientists have been

responsible for some of the most striking examples of object

discovery. Before the planet Neptune was directly observed,

the existence of this object was inferred based on the way

that it interacted with known objects. Many microoorganisms

have also been discovered without the benefit of direct obser-

vation, and Koch’s postulates characterize one case in which

the existence of an unobserved organism can be confidently

inferred.

Identification

So far we have assumed that the information available to a

reasoner takes the form of a partially observed repository
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Figure 3: Inductive inferences are based on information about

objects, relations and labels. (a) In some cases, the avail-

able information corresponds to a partially observed semantic

repository and can be formalized as a list of statements. (b)

In other cases the available information is better described as

a list of statements about object and relation tokens together

with identity relations Io and Ir that specify which tokens the

same object or relation. The identity relations here are fully

observed, and the information in (b) is equivalent to the infor-

mation in (a). In general, however, the identity relations will

be partially observed as they are in Figure 2.

Robs involving objects, relations, and labels. In many cases,

however, this partially observed repository cannot be directly

experienced and must instead be constructed from more prim-

itive kinds of observations. Here we assume that the primitive

observations take the form of the token data T in Figure 2.

These token data specify information about object tokens,

relation tokens, and labels, where each token is an instance

of an underlying object or relation. Suppose, for example,

that you have met Arjun on two occasions. The information

you gather will refer to two distinct object tokens, and it is

likely you will understand that these tokens are instances of

the same individual. Note, however, that it is entirely possible

to meet the same person twice and to think that the two object

tokens are instances of different individuals.

The notion of a relation token can be introduced using a

common word learning scenario. Suppose that a young child

has noticed that some objects are round—in other words, she

has acquired the unary relation round(·), although she does

not yet know the name of this relation. Suppose now that

the child’s father points to an orange and tells her that this

object is “round.” The child now knows that there is some

unary relation with this label, but may still be unsure whether

the label refers to the round(·) relation or to some other re-

lation. Relation tokens provide a natural way to handle this

uncertainty. A relation token is created when the child thinks

of the relation round(·), and another relation token is created

and associated with the label “round.” Given these two to-

kens, the child may well be unsure whether they are instances

of the same underlying relation.

It is possible to introduce a distinction between a label, or

a sequence of phonemes, and a label token, or an utterance

of a label that is spoken in a particular accent and that may

include speech errors. For simplicity, we avoid making this

distinction here, and assume instead that labels and naming

relations name(·, ·) can both be directly observed.

The problem of identification can now be formalized. Sup-

pose that a reasoner is given a list of statements that spec-

ify information about object tokens and relation tokens (Fig-

ure 3b). Suppose also that there are two identity relations,



one for object tokens (Io) and one for relation tokens (Ir).

Io(o
∗

i , o
∗

j ) = 1 if tokens o∗i and o∗j are instances of the same

object, and Ir(r
∗

i , r∗j ) = 1 if tokens r∗i and r∗j are instances

of the same relation. Each identity relation may be partially

observed—in Figure 2, for example, the reasoner is not sure

whether o∗
1

and o∗
2

correspond to the same object, and whether

r∗
1

and r∗
2

correspond to the same relation. The problem of

identification is to infer which tokens correspond to the same

underlying entity—in other words, to infer the relations Io

and Ir.

A closely related problem is known as recognition [13].

Suppose, for example, that Bill, Bob and Ben are triplets and

that you have met all three. One day you see a boy in the

store and recognize him as a person you have seen before,

even though you cannot identify him as Bill, Bob or Ben. As

this example suggests, recognition is the problem of deciding

whether a token is an instance of a previously-observed en-

tity without necessarily identifying the entity involved. This

problem can again be formulated as an inference about the

identity relations Io and Ir in Figure 2. In the recognition

setting, a reasoner may be uncertain about the contents of Io,

but may infer enough about this relation to know whether a

given object has previously been observed.

Although this section has focused on identification, the two

inductive problems previously described (generalization and

discovery) can be formulated given raw data in the form of

object and relation tokens. Once the relations Io and Ir have

been inferred, the observations in Figure 3b uniquely spec-

ify a partially observed repository, and we are back to the

inductive setting considered in previous sections. The prob-

lems considered in previous sections can be posed even if a

reasoner is uncertain about the identity relations Io and Ir.

Even if a reasoner is uncertain about Robs she can still make

inferences about unobserved properties of object tokens, and

inferences about the existence of objects and relations that

have not been observed.

A taxonomy of inductive problems

We have now described a framework for characterizing induc-

tive reasoning (Figure 2). The input data T include statements

about object and relation tokens along with partially observed

identity relations Io and Ir. The goal of the reasoner is to

complete the identity relations, thereby specifying a partially

observed repository Robs, and to infer the true repository R

that is partially captured by Robs. In one sense we have de-

scribed a single inductive problem that is very general. In

another sense our framework captures many inductive prob-

lems, and this section attempts to organize these problems

into a taxonomy.

The previous sections described five basic problems: gen-

eralization, object discovery, relation discovery, object identi-

fication, and relation identification. Additional problems can

be created by combining two or more of these basic problems.

Since there are five basic problems, there are 31 combinations

that include at least one basic problem. We do not suggest that

the 31 problems specified by these combinations are equally

likely to be encountered in the real world, and expect that

some will turn out to be more fundamental than others. We

propose, however, that many of the 31 combinations specify

problems that are worthy of psychological investigation.

The rest of this section focuses on the nine combinations

shown in Table 2. Each row represents a combination, and

the first five columns correspond to the five basic problems.

The combinations above the double line have been discussed

by previous researchers, but the combinations below the line

appear to be novel. Some of these combinations have previ-

ously been discussed in this paper, but for completeness we

briefly review them here.

Note that our taxonomy of 31 problems is only one way

of organizing the inductive problems that emerge from the

framework in Figure 2. For example, Table 2 treats prop-

erty induction and supervised categorization as instances of

the same basic problem, but we could separate the two by

distinguishing between categories and unary relations and in-

creasing the number of problems in the taxonomy. The taxon-

omy could also be expanded by including separate columns

for object generalization and relation generalization instead

of grouping these problems. Our taxonomy provides a useful

way to think about the space of inductive problems, but is by

no means the only taxonomy that could be constructed.

Familiar problems

Generalization. The first row of Table 2 specifies a combi-

nation that includes only the problem of generalization. This

problem has been extensively discussed, and the relevant lit-

erature includes work on stimulus generalization, property in-

duction, and supervised categorization.

Relation discovery. The second row specifies a combina-

tion that includes both relation discovery and relation gener-

alization. Relation discovery is needed to infer the existence

of unobserved relations, and generalization is needed to infer

the extensions of these relations. This combination has been

previously addressed by research on unsupervised categoriza-

tion and predicate invention.

Object identification. The third row specifies a combina-

tion that includes only the problem of object identification.

This problem has previously been discussed by researchers

including [12] and [15], and is closely related to the problem

of recognition [13].

Object identification and generalization. The fourth row

specifies a problem where reasoners are required to make in-

ferences about unobserved properties of object tokens and

may be uncertain whether two tokens correspond to the same

object. Few researchers have set out to study this problem,

but some have explored it inadvertently by designing general-

ization experiments where the stimuli are highly confusable.

There is some debate about whether generalization gradients

are exponential or Gaussian in character. One proposed res-

olution is that pure generalization curves are exponential, but

that inferences about confusable stimuli include an identifi-

cation component that produces near-Gaussian generalization



Generalization Object Relation Object Relation Problem

discovery discovery identification identification

3

Stimulus generalization [15]

Property induction [7]

Supervised categorization [12]

3 3
Unsupervised categorization [2]

Predicate invention [16]

3
Object identification [12]

Object recognition [13]

3 3 Object identification and generalization [6]

3 3 3 Object identification and categorization

3
Property identification [8]

Category identification [10]

3 3
Inferences about ‘Property P’ [14]

Word learning [17]

3 3 Object and property identification [8]

3 3 Object discovery [5]

Table 2: A taxonomy showing 9 of the 31 problems specified by our framework. The framework includes three basic

problems—generalization, discovery, and identification—and additional problems can be specified that include these basic

problems as components. Each problem above the double line has been previously discussed in some detail. The problems

below the double line are discussed less often, although some are connected with previous work.

curves [6]. The literature on this topic suggests that some in-

ductive tasks require two or more basic problems to be solved,

and that it is important to think clearly about the problems

posed by a given task.

Novel problems

Object identification and categorization.

We have just seen that object identification and general-

ization can be combined, and the fifth row specifies a prob-

lem where identification is combined with unsupervised cat-

egorization. The raw data in this case are observations of

object tokens, and the reasoner must decide how many dis-

tinct objects have been observed and organize these objects

into categories. Infants may solve a version of this problem

early in development when they are simultaneously discover-

ing which objects their world contains and organizing these

objects into categories. This problem, however, is rarely dis-

cussed in the psychological literature.

Relation identification. There are many studies of object

identification, but the problem of relation identification (row

6 of Table 2) has received very little attention. In one version

of this problem, the relation to be identified is a property, or

a unary relation. Suppose for example that a reasoner learns

that a polar bear and a dove both have ‘Property P.’ The rea-

soner may be able to infer that ‘Property P’ is the property

of being white. Motivated in part by the taxonomy outlined

here, Kemp et al. [8] have recently addressed this problem.

Real-world instances of property identification often arise

when learning new words. We previously mentioned the case

of a child who is told that an orange is “round”:

r∗j (o∗i ) = 1

name(r∗j , “round”) = 1
(1)

where o∗i is a token of a given orange. Token r∗j will either

correspond to one of the properties that is familiar to the child,

or to a property that has never previously been encountered.

Deciding which possibility is true is a problem of property

identification.

Relation identification and generalization. Row 7 of Ta-

ble 2 shows a closely related problem where the learner must

not only decide whether a relation token corresponds to a fa-

miliar property, but must also decide whether the relation to-

ken can be applied to additional objects. Given, for example,

that a polar bear and a dove both have property P, a reasoner

can be asked to decide whether a swan has property P.

Generalization problems of this kind should be distin-

guished from property induction problems that do not include

an identification component. Some studies ask participants to

make inferences about “property P,” but others use properties

like “has biotinic acid in its blood.” Property P may be inter-

preted as a token of a familiar property, but the “biotinic acid”

example uses a novel property that does not raise the problem

of identification.

The literature on property induction often blurs the distinc-

tion between these two kinds of properties, but this distinc-

tion helps to explain some findings that seem puzzling at first.

Consider, for example, two studies of inductive reasoning that

compared German speakers with Mandarin speakers [14].

Unlike German and English, Mandarin is a language with nu-

meral classifiers, or linguistic categories that organize objects

into groups on the basis of properties like shape (e.g. whether

an object is long and thin) and function (e.g. whether an ob-

ject has a handle). Mandarin speakers are therefore likely to

think of these properties given problems that include a prop-

erty identification component, but less likely when given pure

generalization problems. The results of Saalbach and Imai



[14] are consistent with this prediction. In their first study,

participants judged whether two objects were likely to “carry

the same bacteria”, and the second study was identical except

that the bacteria property was replaced by “property X.” No

difference was found between the two groups when the bac-

teria property was used, but Mandarin speakers were more

likely to give responses that matched their numeral classifiers

in the “property X” experiment.

Real-world examples of property identification and gener-

alization often arise in the context of word learning. Given

the information in Equation 1, for example, a reasoner can be

asked to extend the label “round” to other objects. General-

ization tests of this kind often explore cases where a learner

acquires a label (e.g. “round”) for a pre-existing concept (e.g.

the property round(·).) Many approaches to word-learning

(including the modeling work of Xu and Tenenbaum [17]) are

consistent with the idea that word-learning includes an iden-

tification component. Analyzing word-learning in this way

helps to explain cases of ‘one-shot learning’ or ‘fast map-

ping’ [4] where children appear to learn a new concept in a

single exposure. In reality, children are often learning a label

for a pre-existing concept, which is a much simpler challenge.

Object and property identification. Object and property

identification can be studied individually, but the task in the

eighth row of Table 2 requires both problems to be solved.

Suppose, for example, that Tweety the canary has property

P , that Animal A also has property P , and that Animal A has

a mane [8]. Humans can combine all of this information in

order to identify the property (P is more likely to be yellow(·)
than feathered(·)) and the object (A is more likely to be Leo

the lion than Hans the horse).

Object discovery. The final row in Table 2 represents the

problem of object discovery. This problem is occasionally

mentioned in the psychological literature [3] but is rarely ad-

dressed by modeling or experimental work. Note that the

problem includes a generalization component, since postu-

lating a new object is of little use unless its properties or its

relationships to other objects can be inferred.

Conclusion

Psychologists dream of developing unified theories of cogni-

tion [11], and our long-term goal is only slightly more mod-

est: we aim for a unified theory of inductive inference. In

order to reach this goal it will be necessary to understand the

space of inductive problems that people are able to solve. We

took a step in this direction by providing a systematic descrip-

tion of more than thirty inductive problems involving objects,

relations, and labels. All of these problems are closely related

and it is surprising that many of them have received little pre-

vious attention. Future work can explore all of these problems

in detail.

This paper has not focused on computational models, but

future work can aim to develop a single formal framework

that addresses all of the problems in our taxonomy. The prob-

lems we described can potentially be addressed by several dif-

ferent approaches, including connectionist, logical, and prob-

abilistic approaches. For example, a probabilistic approach

can be developed by defining a prior distribution over seman-

tic repositories and a procedure by which object tokens, re-

lation tokens, and labels are sampled from a true but unob-

served repository. Given these components, a learner who

observes a collection of tokens can compute a posterior dis-

tribution over identity relations and repositories, and can use

this distribution to address all the problems in our taxonomy.

Previous researchers [2, 8, 15, 17] have described probabilis-

tic models that address some of the individual problems in our

taxonomy, and the approach just sketched may help to unify

many of these models.
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