Psychon Bull Rev
DOI 10.3758/513423-013-0467-3

THEORETICAL REVIEW

A taxonomy of inductive problems

Charles Kemp - Alan Jern

© Psychonomic Society, Inc. 2013

Abstract Inductive inferences about objects, features, catego-
ries, and relations have been studied for many years, but there
are few attempts to chart the range of inductive problems that
humans are able to solve. We present a taxonomy of inductive
problems that helps to clarify the relationships between familiar
inductive problems such as generalization, categorization, and
identification, and that introduces new inductive problems for
psychological investigation. Our taxonomy is founded on the
idea that semantic knowledge is organized into systems of
objects, features, categories, and relations, and we attempt to
characterize all of the inductive problems that can arise when
these systems are partially observed. Recent studies have begun
to address some of the new problems in our taxonomy, and
future work should aim to develop unified theories of inductive
reasoning that explain how people solve all of the problems in
the taxonomy.

Keywords Induction - Semantic cognition - Generalization -
Categorization - Discovery - Identification - Reasoning

Attempts to systematize knowledge have proven useful in
several fields. Mendeleev presented a periodic table of the
chemical elements that helped to clarify relationships between
the known elements and that made predictions about the exis-
tence of new elements. Adelson and Bergen (1991) developed
a “periodic table” of early vision that mapped out a space of
visual and identified several that had previously received little
attention. This article aims to make a similar contribution to the
study of inductive reasoning. We describe a taxonomy of
inductive problems that aims to clarify the relationships be-
tween familiar problems and to highlight problems that have
previously been overlooked.

Inductive reasoning has been discussed by researchers
from many fields (Hayes, Heit, & Swendsen, 2010; Heit,
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2000; Holland, Holyoak, Nisbett, & Thagard, 1986; Vickers,
2012), and the term “induction” has been defined both broadly
and narrowly (Colberg, Nester, & Trattner, 1985; Thagard,
2001). We will adopt a broad definition and will consider an
inference to be inductive if the conclusion does not follow
deductively from the premises (Chater, Oaksford, Hahn, &
Heit, 2011; Holland et al., 1986; Skyrms, 1975). Inferences of
this kind are sometimes called ampliative, because the con-
clusion goes beyond the information given and is at best likely
rather than certain given the available evidence. An alternative
tradition uses “induction” more narrowly to refer to any infer-
ence that moves from specific observations (e.g., Bob and Bill
are mortal) to a general conclusion (e.g., all men are mortal;
Quine & Ullian, 1978; Vickers, 2012). From this perspective,
the set of ampliative inferences includes some that are induc-
tive and others that are instances of abduction (Peirce, 1957)
and of other kinds of reasoning. Although both broad and
narrow definitions can be found in the psychological litera-
ture, contemporary work on induction tends to adopt the broad
rather than the narrow view (Sloman, 2007).

The broad definition of inductive reasoning characterizes
induction in opposition to deduction, and adopting this defi-
nition means that inductive problems form “a large and varied
set” (Heit, 2008, p. 323) that includes “a vast number of
argument forms and types” (Sloman, 2007, p. 329). The broad
definition therefore raises the need for a taxonomy that pro-
vides a systematic characterization of the space of inductive
problems (Bisanz, Bisanz, & Korpan, 1994). Inductive infer-
ence is relevant to just about every area of cognition; it takes
place, for example, when humans predict the motion of an
occluded object, assess the grammaticality of a novel sen-
tence, or decide how to grasp an object that is encountered
for the first time. We will not focus on vision, language, or
motor control, but will instead focus on a cluster of problems
from an area that has been called semantic cognition (Rogers
& McClelland, 2004). Research in this area aims to capture
knowledge about objects, features, categories, relationships
between objects, and word meanings. The relevant literature
includes studies of property induction (Gelman & Markman,
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1986; Imai, 1995), categorization (both supervised [Nosofsky,
1986] and unsupervised [Pothos & Chater, 2002]), stimulus
generalization (Shepard, 1987), identification (Nosofsky, 1986),
and word learning (Markman, 1989). This article develops a
taxonomy of inductive problems that includes all of these classic
problems, along with others that have received little attention.

Taxonomies of inductive reasoning can be based on at
least two different perspectives. Following Heit (2007), we
refer to these perspectives as the problem view and the
process view." Our taxonomy adopts the problem view and
attempts to characterize the space of inductive problems that
people are able to solve. Each individual problem is charac-
terized by describing the input available to the reasoner and
the output that the reasoner must generate. Importantly,
characterizations of these problems can be provided without
specifying the psychological processes that allow the rea-
soner to convert the input into the output (Marr, 1982).
Instead of focusing on the space of inductive problems, the
process view proposes that taxonomies of inductive reason-
ing should aim to characterize the psychological processes
that support induction. Sternberg (1986) presented a taxon-
omy along these lines that proposes that inductive reasoning
involves three processes: selective encoding, selective com-
parison, and selective combination.

At first it might seem that psychological research
should focus exclusively on the process view of induc-
tion, but we believe that the problem view is a necessary
precursor to the process view. Any psychologist who sets
out to understand inductive reasoning will need to con-
sider data gathered from a variety of tasks, and charac-
terizing the space of inductive problems is necessary in
order to decide which tasks are relevant. For example,
Sternberg (1986) presumably developed his process-based
taxonomy by selecting several problems that are broadly
representative of the space of inductive problems (the
three that he discusses are analogical reasoning, series
completion, and classification) and reflecting on the pro-
cesses that enable these problems to be solved. Although
some characterization of the problem space is essential, this
characterization could be informal and pretheoretical. For
example, a researcher might implicitly adopt a problem space
that corresponds to the set of all problems that are commonly
studied in the literature on inductive reasoning. From this
perspective, the real question is not whether some character-
ization of the problem space is necessary, but whether it is
possible to improve upon the informal characterization that is
implicit in much psychological research.

! Heit (2007) uses these terms to refer to two proposals about how the
relationship between induction and deduction should be characterized.
Here we adopt his terminology to refer to two proposals about how
inductive reasoning should be characterized.
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We propose that a systematic characterization of the space
of inductive problems can contribute to the field in at least
four respects. First, a taxonomy of inductive problems can
reveal the similarities and differences between problems that
have been discussed in different parts of the literature. The
popularity of inductive reasoning as a research area has led to
a fragmentation of the literature that has made it difficult to
understand the relationships between the problems that have
been studied thus far. One symptom of this fragmentation is a
proliferation of inconsistent terminology (Reber & Reber,
2001). For example, a reader might reasonably assume that
“feature induction” and “feature learning” are two different
names for the same problem, and that “categorical induction”
refers to a distinct problem. In reality, “feature induction”
(Murphy, 1993) and “categorical induction” (Sloman &
Lagnado, 2005) are different names for the same problem,
and “feature induction” (Murphy, 1993) and “feature learn-
ing” (Austerweil & Griffiths, 2011) are similar names for
different problems. We will return to these problems later,
but the point for now is that a successful taxonomy should
help to avoid terminological confusion.

Second, a taxonomy of inductive problems can help to
resolve theoretical disputes that turn on the nature of the
problems posed by a given task. For example, consider a task
in which participants learn that an object has a hidden feature
and are subsequently exposed to a second, similar-looking
object. There are at least two possible reasons to believe that
the second object has the hidden feature (Brown, 1965). Some
participants might understand that the second object is differ-
ent from the first, but might infer that both objects have the
hidden feature. Other participants might think that the second
object has the hidden feature because they mistakenly identify
it as the first object. In terms of the taxonomy that we will
develop, the first explanation focuses on the problem of gen-
eralization, and the second explanation focuses on the prob-
lem of identification. The failure to acknowledge both of these
explanations has led to some confusion in the literature
(Chater, Vitanyi, & Stewart, 2001). For example, there has
been some debate about whether generalization gradients are
closer to Gaussian functions (Nosofsky, 1986) or to exponen-
tial functions (Shepard, 1987). One proposed resolution is that
pure generalization curves are exponential, but that inferences
about highly confusable objects include an identification com-
ponent that produces near-Gaussian generalization curves
(Ennis, 1988; Nosofsky, 1988; Shepard, 1986). Examples of
this kind suggest that thinking carefully about the problems
posed by a given task is a useful first step before attempting to
characterize the underlying psychological processes.

Third, a taxonomy of inductive problems can reveal novel
problems that can be explored by future empirical studies.
Even though core inductive problems such as generalization
and identification have been studied for many years, other
important problems have been neglected. To illustrate this
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point, we will describe recent studies of feature identification
(Kemp, Chang, & Lombardi, 2010), category generation (Jern
& Kemp, 2013), and simultaneous object and feature gener-
alization (Kemp, Shafto, & Tenenbaum, 2012). All three
studies address novel inductive problems that were explored
while developing our taxonomy.

Fourth, a systematic characterization of the space of in-
ductive problems is a useful step toward developing theories
that can explain how people solve all of these problems.
Some previous theories have been able to handle multiple
inductive problems—for example, exemplar models have
been used to account for problems including categorization
and identification (Estes, 1994; Nosofsky, 1992). No current
theory, however, comes close to handling all of the problems
in our taxonomy. Because we aim to characterize inductive
problems rather than to describe the psychological processes
that allow them to be solved, we hope that our taxonomy will
be useful to researchers from many different traditions, in-
cluding modelers who pursue probabilistic, exemplar-based,
or connectionist approaches. Toward the end of the article,
however, we will argue that a probabilistic approach pro-
vides an especially natural way to work toward a unified
theory that can address all of the problems that we consider.

Accounts of semantic cognition differ in many respects, but
most of them rely on objects, features, categories, and re-
lations. Our taxonomy takes these basic notions as a starting
point and attempts to chart the space of inductive problems
that can be posed given a commitment to these notions. We
will develop the taxonomy by characterizing semantic systems
of objects, features, categories, and relations that capture the
state of some part of the world. We will then consider prob-
lems in which a reasoner receives incomplete information
about a system and must make inductive inferences about
unobserved aspects of the system. We will consider three basic
problems, which we refer to as generalization, discovery, and
identification. These three problems take different forms when
defined over different kinds of semantic systems, and can be
combined with each other to generate additional problems. As
a result, the taxonomy that we describe includes a large
number of distinct problems.

Semantic systems

We begin by describing how semantic systems of objects,
features, categories, and relations can be characterized. Figure 1
shows examples of five systems. Figure la is a system that
includes four objects, three features (size, color, and texture),
and a category that includes the large objects. Figure 1b is a
system that includes four objects and a directed binary relation.
For example, the objects could be baboons, and the relation
could indicate which baboons dominate each other. Figure 1c is
a molecule of methane, which includes five atoms and an

undirected relation that represents chemical bonds between
some pairs of atoms. The system includes categories that
specify the kind of each atom, and may also include features
that specify the mass and other properties of each atom.
Figure 1d is a system that includes multiple relations and
features. The system is a nuclear family, and the objects in
the system are seven individuals. The features, categories, and
relations in the system are not shown in full in Fig. 1d, and may
include a category that specifies the gender of each individual
and kinship relations such as parent(-,") and spouse(:,’).

Figures la—d illustrate how objects, features, categories,
and relations can be combined to construct systems. These
systems in turn can be treated as “compound objects” over
which features and relations can be subsequently defined.
Figure 1e shows an example that includes eight systems, each
of which includes three objects (i.e., three gray squares). The
higher-level system in Fig. 1e includes a category defined over
these systems that includes all systems with two or more
slashes. Event categories such as “armed robbery” are real-
world examples of categories that can be formulated similarly.
Each robbery can be viewed as a semantic system that spec-
ifies relationships between components that include the rob-
ber, the victim, and the item that was stolen (Gentner & Kurtz,
2005). The category of “armed robberies” includes all systems
that indicate that a weapon was used to commit the crime.
Higher-level systems like Fig. 1e can also include features and
relations defined over lower-level systems, and can in turn be
treated as compound objects that are used to construct systems
at an even higher level.

Figures la and e are examples in which categories corre-
spond to classes of items. Categories, however, can also be
viewed as abstract entities that can bear features. For exam-
ple, generic statements such as “the dodo has a beak” and
“the dodo is extinct” appear to correspond to claims about
the features of the category named “dodo.” Statements of this
kind cannot always be paraphrased as claims that all mem-
bers of the category have the feature in question. For exam-
ple, “is extinct” is a feature that can sensibly be applied to a
category, but not to any individual member of the category
(Carlson, 2010). As a result, our taxonomy includes prob-
lems in which categories are treated as first-class entities that
can bear features in their own right. We distinguish between
problems of this kind and problems in which categories are
simply treated as classes of objects.

We have introduced the notion of a semantic system
relatively informally, but Kemp (2012) shows how this no-
tion can be formally captured using set-theoretic machinery.
If desired, the same formal approach could be used to char-
acterize the space of semantic systems that serves as the
foundation of our taxonomy. Here, however, our primary
goal is to characterize the space of inductive problems, and
an informal characterization of the space of semantic systems
will suffice for this purpose.
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Fig. 1 Semantic systems. (a) A system with four objects, three binary
features (color, size, and texture), and a category that includes the two
large objects. (b) A system with four objects and a single, directed
binary relation. (¢) A molecule of methane can be viewed as a system
that includes five objects (atoms), categories that indicate the kind of
each atom, and a binary relation that indicates which pairs of atoms are
bonded to each other. (d) The nuclear family shown is a system that
includes six relatives of an individual, labeled as Ego: his mother (M),

A taxonomy of inductive problems

In the previous section, we described how semantic systems
can be constructed by combining objects, features, catego-
ries, and relations. An inductive problem arises when a
reasoner is given incomplete information about a system.
This section describes three basic ways in which knowledge
about a system might be incomplete. These three kinds of
incompleteness lead to three inductive problems that we will
refer to as generalization, discovery, and identification.

The three basic problems are very general, and versions of
these problems can arise with respect to any semantic system.
Our initial discussion of these problems will focus on simple
semantic systems that can be visualized as matrices. The rows
of each matrix correspond either to individual objects (e.g., a
specific elephant and a specific rhino) or to categories (e.g.,
elephants and rhinos). The columns correspond either to fea-
tures (e.g., “is large,” “has a tail,” “moves slowly”) or to
categories (e.g., “is a mammal,” “is an animal”). Figure 2a
shows example matrices that specify information about five
objects, three features, and two categories. The black cells in
the first matrix indicate which features the objects have. For
example, object 0, has feature f; and feature f>. The black cells
in the second matrix indicate which categories the objects
belong to. For example, object 0; belongs to category ¢y, and
object 04 belongs to category c,.

The problems of generalization, discovery, and identifi-
cation each come in many forms. We will introduce each
problem by focusing on cases in which there is uncertainty
about a single component of a semantic system—for exam-
ple, uncertainty about a single feature, a single category, or a
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father (F), younger and elder sisters (Zy and Ze), and younger and elder
brothers (By and Be). The system may include a category that specifies
the sex of each individual, as well as several relations, including kinship
relations like parent(-,") (e) A high-level semantic system defined over
eight compound objects, each of which is a three-object semantic
system in its own right. The high-level system includes a category,
shown as a dashed rectangle, that includes all compound objects that
have two or more objects with slashes

single object. In general, however, the three inductive prob-
lems may involve uncertainty about multiple objects, fea-
tures, and categories, and we will describe one such example
for each of the three problems.

Many of the problems that we will describe have been
studied by psychologists, and this section includes many refer-
ences to previous work. We will not exhaustively survey the
literature on inductive reasoning, but will focus instead on
studies that have been especially influential and on studies that
illustrate the range of different labels that have been used for the
problems that we consider. Many of the articles that we will cite
have presented both empirical results and theoretical ap-
proaches to inductive reasoning, but this section will not survey
these results and theoretical approaches. The primary goal here
is to provide a unified account of the space of inductive
problems, and the next section will discuss the prospect of
developing a unified theoretical account of induction.

Generalization

Generalization problems arise when a reasoner knows about
a semantic system including objects, features, and catego-
ries, but does not know the feature values or category as-
signments for all objects in the system. Figure 3a shows an
example in which the semantic system is represented as two
matrices. Black squares in the first matrix indicate cases in
which an object is known to have a certain feature, and white
squares indicate cases in which an object is known not to
have a certain feature. Gray squares indicate feature values
that are unknown and must be inferred. Similarly, black and
white squares in the second matrix indicate cases in which an
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Fig. 2 (a) A semantic system that includes objects, features, and
categories can be visualized using two matrices. The (i, j) cell in the
first matrix is black if object o, has feature f;. The (7, /) cell in the second
matrix is black if object o; is a member of category c;. (b) A system that
includes several additional relations can be visualized by adding several

object is known to belong or not to belong to a category, and
gray squares indicate cases in which the category assignment
of an object is unknown.

Feature generalization. Feature generalization is a problem
in which a reasoner makes inferences about one feature at a
time. Figure 3a shows an example in which a reasoner
observes that object o, has feature f7, and must infer which
of the remaining objects o, through o5 have this feature. For
example, suppose that you learn that Elmer the elephant has
enzyme X132 in his blood, and you need to predict whether
each remaining animal in the same zoo will test positive for
the enzyme. You might predict that Ronald the rhino is more
likely to have this enzyme than Samuel the skunk. Figure 3a
shows an example in which only one object is known to have
the novel feature, but in general multiple observations may
be available—for example, you might know that objects o,
and o, have a novel feature but that o; does not, and might
have to infer whether or not o4 has the novel feature.

Figure 3 shows 24 problems in total and includes a label for
each of these problems. The label for the feature generaliza-
tion problem in Fig. 3 is Gn(O, /). Gn is short for generaliza-
tion, and the O and the findicate that the problem requires an
inference about a matrix of objects by features. We will use
lowercase letters to indicate problems that focus on inferences
about a single element in a semantic system. For example, the
fin Gn(O, f") indicates that this problem focuses on inferences
about a single feature. Uppercase letters do not constrain the
number of elements involved—for example, the O in Gn(O,
f) indicates that the problem involves inferences about one or
more objects.

Problem Gn(O, f) has been extensively studied and is
discussed, for example, in the literature on “stimulus general-
ization” (Gluck, 1991; Guttman & Kalish, 1956; Hull, 1943;
Pavlov, 1927; Shepard, 1957, 1987; Skinner, 1938; Tenenbaum
& Griffiths, 2001). A typical experiment in this literature might
present a reasoner with a single object that has a desirable
feature—for example, a reasoner might be given a berry that
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square matrices of objects by objects to the matrices of objects by
features and objects by categories. Three square matrices are shown,
one for each relation. The (i, j) cell in matrix & is black if relation 7,
holds between objects o; and o,

tastes good. The reasoner is then presented with another berry
that might be different in size, shape, or color, and is required to
decide whether this second berry also tastes good.

Problem Gn(O, /') has also been discussed in the literature
on conceptual development (Gelman & Markman, 1986,
1987) and is known there as the “problem of property induc-
tion” (Imai, 1995) or “inductive projection” (Markman, 1992).
For example, Gelman and Markman (1987) used a task in
which children were shown a picture of a small blue bird and
told that the bird “gives its baby mashed up food.” The children
were then asked to decide whether the property applied to other
objects, including a blackbird and a small blue butterfly.

Problem Gn(O, f*) asks a reasoner to project a feature from
one object to other objects, and problem Gn(C, 1) in Fig. 3¢ is
a closely related problem in which a reasoner must project a
feature across categories. For example, given that elephants
have enzyme X132 in their blood, a reasoner might be asked to
judge how likely it is that rhinos have enzyme X132 in their
blood. Problem Gn(C, 1) has been studied using both children
(Carey, 1985) and adults (Rips, 1975), and goes by various
names including “category-based induction” (Gelman, 2003;
Osherson, Smith, Wilkie, Lopez, & Shafir, 1990), “categorical
induction” (Sloman & Lagnado, 2005), “property induction”
(Sloman & Wisniewski, 1992), “feature induction”
(Hadjichristidis, Sloman, Stevenson, & Over, 2004; Murphy,
1993), and “inductive projection” (Carey, 1985; Rogers &
McClelland, 2004). Figure 3e does not include a visual repre-
sentation of the problem, but this representation can easily be
created by adjusting the matrices in Fig. 3a so that the rows
represent categories rather than individual objects.

Category generalization. Category generalization is similar
to feature generalization, but involves inferences about a
partially observed category rather than a partially observed
feature. Figure 3b shows an example in which a reasoner
learns that object o; belongs to category ¢, and must infer
which other objects belong to this category. The label for this
inductive problem is Gn(O, c¢), in which the lowercase ¢
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U s v
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Fig. 3 Generalization, discovery, and identification problems that arise
when reasoning about systems of objects, features, and categories. Black
cells indicate features or category labels that are known to apply: For
example, in (a) object o; has f; and is a ¢,. White cells indicate features or
category labels that are known not to apply: For example, in (a) object o,
does not have f; and is not a ¢;. Gray cells indicate entries with unknown

indicates that the problem focuses on inferences about a
single category.

Problem Gn(O, c¢) has been widely studied and goes by many
names including “concept learning” (Smoke, 1935), “concept
attainment” (Bruner, Goodnow, & Austin, 1956), “classification”
(Posner & Keele, 1968), “supervised categorization” (Ashby &
Maddox, 1998), “category assembly” (Maratsos, 2001), “‘word
learning” (Markman, 1992), and “word extension” (Smith &
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Individuation (Van de Walle et al, 2000)

W ld(c;, F+C) X 1d(Cr,Fr+Cr)

Naming to description (Sartori & Lombardi, 2004)
Concept identification (Bruner et al., 1956)

Kemp et al, 2010, Expt 3

status. The columns of panels show four versions of each problem: a
version that focuses on a single feature, a version that focuses on a single
category, a version that focuses on a single feature-bearer (i.e., a single
object or category), and a version that focuses on multiple features,
categories, and feature-bearers. Selected references and problem names
are included for problems that have been discussed by previous researchers

Heise, 1992). A typical experiment in this literature might present
a reasoner with several objects that are all said to be “wugs.” The
reasoner is then shown a novel object and asked to decide
whether or not it is also a wug. For present purposes, two aspects
of this category generalization problem are especially important.
First, category labels are provided for some objects, which means
that the reasoner has direct evidence of the existence of the
category in question. Problems in which labels are available
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can be distinguished from category discovery problems (Fig. 3j),
in which reasoners spontaneously form categories by noticing
coherent clusters of objects. Second, category generalization
problems require reasoners to learn novel categories, not just
novel labels for categories that they already know. Problems
involving novel categories can be distinguished from category
identification problems (Fig. 3r), in which reasoners learn novel
labels for preexisting categories.

The distinctions just described between category generali-
zation, category discovery, and category identification are
consistent with distinctions that have been proposed by pre-
vious researchers (Bruner et al., 1956; Maratsos, 2001). These
distinctions, however, are by no means universally accepted.
The literature on categorization includes many different
names for inductive problems, and these names are often used
in inconsistent ways. For example, Reber and Reber (2001)
pointed out that the literature “abounds with terms,” including
“concept acquisition, concept development, concept discov-
ery, concept identification, concept use, concept attainment,
and concept induction,” and that there is “precious little agree-
ment about terminology” (p. 141). The references in Fig. 3b
indicate that some researchers have used names such as “con-
cept learning” and “concept attainment” to refer to problem
Gn(O, c), but this should not be taken to suggest that these
names always refer to problem Gn(O, c¢).

Problem Gn(C, c) is a version of the problem in Fig. 3b in
which the rows of the matrices represent categories rather than
objects. For example, a child might be told that mice, dogs, and
clephants are “feps,” and then asked to decide which other
categories belong to the category of feps. Problem Gn(C, c) has
received relatively little attention, but a study by Tare and
Gelman (2010) comes close to addressing a version of the
problem. In one of their conditions, Tare and Gelman informed
participants that “apples are feps,” and then showed them pic-
tures of a balloon, a bunch of grapes, and a knife and asked them
to “point to another fep.” Because the task asked for inferences
about three specific objects, it does not qualify as an example of
problem Gn(C, c). The task, however, could be converted into a
genuine example of problem Gn(C, c) if pictures had not been
used and participants had simply been asked whether balloons
are feps, whether grapes are feps, and whether knives are feps.

Object generalization and category generalization. The
generalization problems described so far have involved in-
ferences about a single feature or a single category. Object
generalization is a companion problem that focuses on in-
ferences about a single object. Some of the feature values and
category assignments for the object are known, and the
reasoner must infer the values of all remaining features and
categories. We refer to this problem as Gn(o, F+C), in which
the lowercase o and the uppercase F+C indicate that the
problem focuses on inferences about the features and cate-
gory assignments of a single object.

Figure 3¢ shows that object generalization can be visualized
as a matrix completion problem in which the goal is to complete
a single row. For example, suppose that you learn that scientists
have discovered a new creature, but all that you know so far is
that the creature flies. You might be able to predict some of the
other features that the creature would have; for example, it
probably has wings, it probably does not have gills, and there
is a good chance that the creature is a bird. The example in
Fig. 3c specifies exactly two observations concerning the novel
object—a feature value and a category label—but examples
involving one, two, or more than two observations along the
bottom row are all valid instances of object generalization.

Object generalization has been studied by many researchers
and is often described as the problem of “feature inference”
(Anderson, Ross, & Chin-Parker, 2002; Rehder & Burnett,
2005; Sweller & Hayes, 2010; Yamauchi & Markman, 1998).
In a typical feature inference task, reasoners observe one or
more features of a novel object and then predict which other
features the object is likely to have (Hayes & Thompson, 2007,
McCarrell & Callanan, 1995; Murphy & Ross, 2010). The
same problem is occasionally described as “feature induction”
(Sloutsky & Fisher, 2002), although this name is more com-
monly used to refer to the problem in Fig. 3e.

Object generalization has also been addressed by studies that
explore inferences about novel nouns that are used in context.
For example, a child who hears that “Mommy feeds the ferret”
has been given some features of the referent of “ferret” (e.g., that
it eats) and may be able to infer additional features (e.g., that the
referent is animate; Goodman, McDonough, & Brown, 1998).
Similarly, a child who hears that the boojum is hungry might be
able to infer which other features the boojum is likely to have (it
probably has a mouth) and which categories it belongs to (it
probably is an animal; Keil, 1979).

Object generalization has also been explored in depth in the
literature on categorization (Anderson, 1991; Anderson &
Fincham, 1996). In one version of the problem, reasoners
observe some features of a novel object and must decide which
category labels apply to the object. For example, a reasoner
might observe that a novel creature has wings and a beak and
might categorize it as a bird. In a second version of the problem,
reasoners are given the category label of a novel object and
must decide which features the object is likely to have. For
example, upon being told that a novel creature is a bird, a
reasoner may infer that it has wings and a beak. In cases in
which the category label of the novel object is known
(Markman, 1989), object generalization is sometimes described
as the problem of “category-to-feature inference” (Estes, 1994).

The object generalization problem in Fig. 3g is a version of
the problem in Fig. 3c in which the rows of the matrix
represent categories rather than objects. We refer to this prob-
lem as Gn(c, F+C), because it involves inferences about the
features and category assignments of a single category. Prob-
lem Gn(c, F+C) can be informally called “category
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generalization,” but this name is ambiguous because the same
name was previously used for problem Gn(O, ¢) in Fig. 3b.
The labels for these two problems, however, indicate how they
are different. Problem Gn(O, c) is a case in which the category
of interest is treated as a class, and the task is to decide which
objects belong to this class. For example, given a collection of
specimens in a museum, a biology student may need to decide
which specimens are dodos. Problem Gn(c, F+C) is a case in
which the category of interest is treated as a feature-bearer,
and the task is to decide which features apply to this category
and which superordinate categories it belongs to. For exam-
ple, upon learning that dodos have beaks, a child may be able
to infer that dodos have wings and that dodos are birds.

Problem Gn(c, F+C) has received less attention than prob-
lem Gn(o, F+C), but it has been addressed by at least one
study. Kemp (2011) considered a version of the problem in
which participants learn two features of a novel category (e.g.,
“wugs fly”” and “wugs have no legs”) and must decide which
other features the category is likely to have (e.g., wugs prob-
ably have wings).

Simultaneous object, feature, and category generalization. The
generalization problems discussed so far have involved in-
ferences about a single element of a semantic system. Most
psychological studies of generalization have considered
problems of this form, but generalization problems can also
involve uncertainty about multiple elements of a semantic
system. Figure 3d shows one such problem that can be
visualized as a matrix completion problem in which the
unobserved entries are scattered across the entire matrix.
We refer to this problem as Gn(O, F+C), where the upper-
case O, F, and C indicate that the problem does not focus on
inferences about a single row or column of the matrix.

Problems like Gn(O, F+C) arise in many real-world set-
tings. Consider, for example, two parents who are deciding
where to send their child for college. Their knowledge about
the choices available can be captured using a matrix in which
the rows are colleges and the columns capture features includ-
ing tuition price, climate, academic reputation, sporting prow-
ess, and so on. The parents only know some of the entries in
this matrix: For example, they may know that College A is
expensive but have no idea whether its sports program is
strong, and they may know that College B has a strong football
team but have no idea what tuition at the college costs. In order
to decide which colleges to investigate more closely, the par-
ents will need to make inferences about unobserved values of
the features that matter most to them. For example, they may
infer that College C is likely to be expensive because it has a
strong academic reputation, and because it is similar to College
A, which they know to be expensive.

Although Gn(O, F+C) is a common real-world problem, it
is discussed relatively rarely in the psychological literature.
One recent study explored a version of the problem in which
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participants were given sparsely observed object—feature ma-
trices like the example in Fig. 4a and asked to fill in the gaps
(Kemp et al., 2012). Before completing this task, participants
were told about causal relationships between the features—for
example, feature f; tends to cause feature f;, which tends to
cause feature f3. The results suggested that participants were
able to generalize across both objects and features. For exam-
ple, after learning that the mouse had f;, Fig. 4a shows that
participants were relatively confident that the mouse had £,
(object generalization) and that the rat had f; (feature general-
ization). Participants were also able to make inferences that
relied on generalization across objects and features—for ex-
ample, their inferences that the rat had /> were above baseline.

Problem Gn(C, F+C) in Fig. 3h is a version of the matrix
completion problem in Fig. 3d in which the rows of the matrix
represent categories rather than objects. The study shown in
Fig. 4a asked participants to reason about four individual
animals—a mouse, a rat, a squirrel, and a sheep—but similar
studies could be conducted that ask for inferences about four
categories (mice, rats, squirrels, and sheep).

Discovery

All of the generalization problems in Fig. 3a—h were created by
concealing some of the entries in a semantic system, and in
each case the observed entries included information about each
row and each column in the matrix. In general, however, there
may be no observations for a given row in the matrix, and a
reasoner may have no direct evidence that the corresponding
object exists. Similarly, there may be no observations for a
given column, and the reasoner may have no direct evidence
that the corresponding feature or category exists. We will refer
to problems in which the reasoner must infer the existence of
unobserved elements as discovery problems. Figures 3i—1 show
four examples in which the objects, features, and categories to
be discovered are shown as gray columns or rows.

Feature discovery. Feature discovery is a problem in which a
reasoner is given an initial set of objects and features and
subsequently constructs or infers the existence of a new feature
that did not belong to the initial set. Figure 31 shows an
example in which the new feature corresponds to the final
column in the object—feature matrix. The label of this problem
is Ds(O, f). The Ds indicates that the problem is a discovery
problem, the O and f indicate that the problem involves a
matrix of objects by features, and the lowercase f'indicates that
the problem requires the reasoner to discover a single feature.

Feature discovery has been extensively discussed by psy-
chologists, who sometimes refer to the problem as “feature
learning” or “feature construction” (Austerweil & Griffiths,
2009; Landy & Goldstone, 2005; Schyns, Goldstone, &
Thibaut, 1998; Wisniewski & Medin, 1994), and by machine-
learning researchers, who often refer to the problem as
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Fig. 4 Novel problems that were identified while developing the tax-
onomy in Fig. 3. Each problem combines two of the basic problems in
Fig. 3. (a) (i) A generalization problem in which participants observe
one entry in an object—feature matrix and then make inferences about all
remaining entries in the matrix. (ii) Human inferences are sensitive to
both the taxonomic relationships between the objects (e.g., the rat is
judged more likely to have f; than the sheep) and the causal relation-
ships between the features (e.g., the judged probability that the mouse
has f, is above baseline). (b) (i) A discovery problem in which

“constructive induction” (Rendell & Seshu, 1990). A typical
study of feature learning might use a task in which participants
view objects that are constructed from hundreds of oriented line
segments. By tracking which of these segments tend to appear
together, participants might discover that each object is built
from several parts that each correspond to a constellation of line
segments. These parts can be described as features, and discov-
ering the existence of these parts therefore qualifies as an
instance of feature discovery. In other settings, feature discov-
ery may rely more heavily on rich background knowledge than
on observations of low-level features such as line segments
(Wisniewski & Medin, 1994). In general, feature discovery
can therefore be characterized as a problem that requires
preexisting features to be combined with background knowl-
edge in order to discover new features.

Problem Ds(C, /') in Fig. 3m is a version of the problem in
Fig. 3i in which the rows of the matrix represent categories

is white, polar bear

has a long neck, giraffe

can swim, polar bear

can swim, beaver

0 02 04 06

Proportion

participants observe eight objects and then must draw a ninth object
that has not been observed. Each object is created by combining a
horizontal piece with a vertical piece, and the gray cells in the design
matrix represent the eight combinations observed during training. (ii)
Participants tend to generate new objects by combining horizontal and
vertical pieces that have not previously been combined. (¢) (i) An
identification problem in which participants must infer the identities
of feature F and animal A. (ii) The most common response is that F is
“white” and that A is “polar bear”

rather than features. Given information about several catego-
ries, a reasoner may be able to construct new features by
combining existing features. For example, a reasoner who
hears about several animal species that “come in many colors”
and “come in many sizes” might combine these features to
create a new feature that might be glossed as “variable in
appearance.” To our knowledge, however, problem Ds(C, 1)
has not been addressed in the psychological literature.

Category discovery. Figure 3j shows a problem in which the
column in gray represents an unobserved category that
must be discovered. The new category need not receive
a verbal label—for example, an experimental participant
might construct two new categories by sorting objects
into two piles and thinking of them as “the ones over
here” and “the ones over there,” without ever assigning
a verbal label to either group.
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The problem of category discovery goes by several
names, including “concept formation” (Bruner et al., 1956),
“category construction” (Ahn & Medin, 1992; Medin,
Wattenmaker, & Hampson, 1987), and “clustering” (Fisher,
1987). It is also known as the problem of “unsupervised
categorization”—unsupervised, because none of the category
labels is provided by a supervisor or teacher (Pothos & Chater,
2002). For example, the first European explorers to visit
Australia were able to organize the animals that they saw into
categories without needing a supervisor to provide category
labels. Unsupervised categorization has received less attention
than supervised categorization, but has nevertheless been
extensively studied (Anderson, 1991; Inhelder & Piaget,
1964; Love, 2002; Pothos et al., 2011).

Figure 3n is a problem in which a reasoner begins with an
existing set of categories and constructs a new higher-order
category that includes some of these categories. For example,
a European explorer might organize some of the categories
that he discovered into the higher-order category of “marsu-
pials.” Inferences of this kind have been studied using pile-
sorting tasks in which the items to be sorted are the names of
categories. For example, Berlin, Breedlove, and Raven (1974)
gave people a set of plant categories and asked them to
organize these categories into higher-order categories.

Object discovery and category discovery. Object discovery
is a problem in which all relevant features and categories are
known but a reasoner must infer the existence of one or more
unobserved objects. Figure 3k shows an example in which the
existence of the object that occupies the final row in the matrix
must be inferred. For example, before the planet Neptune was
directly observed, Le Verrier inferred the existence of this
object on the basis of perturbations in the orbit of Uranus. Le
Verrier’s discovery can be viewed as an inductive inference
about a partially observed matrix in which the rows represent
heavenly bodies and the columns represent features of these
objects, including their masses and positions. There were at
least two possible explanations of the available data: Perhaps an
unobserved planet was affecting the orbit of Uranus, or perhaps
Newton’s laws did not apply as expected (Leverington, 2003).
The first explanation was correct in the case of Neptune, but a
subsequent episode demonstrated that the second explanation
was a genuine contender. On the basis of perturbations in the
orbit of Mercury, Le Verrier inferred the existence of a planet,
Vulcan, that lay between Mercury and the sun. Le Verrier’s
conclusion was plausible but wrong, and the anomalies in
Mercury’s orbit were eventually explained when Newton’s
laws were superseded by Einstein’s general theory of relativity.

Object discovery has received relatively little attention in
the psychological literature, but some simple versions of the
problem have been explored empirically (Csibra & Volein,
2008; Kemp, Jern, & Xu, 2009). In one study that was
inspired by the discovery of Neptune, participants were
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asked to make inferences about unobserved charged particles
that determined the trajectory of an observed particle (Carroll
& Kemp, 2012). Inferences of this kind can be viewed as
inductive inferences about a partially observed matrix in
which the rows represent particles and the columns represent
features of the particles, including their charges and positions.
In a second line of work, developmental researchers have
explored the conditions that lead infants to infer the existence
of'a hidden object (Csibra & Volein, 2008; Saxe, Tenenbaum,
& Carey, 2005). For example, Csibra and Volein provided
evidence that infants are able to infer the existence of a hidden
object by following the gaze of another person. The studies
just described explore some of the simplest possible versions
of the problem of object discovery, but it is likely that other
versions of the problem would repay empirical investigation.
Figure 30 shows a category discovery problem that is a
version of the matrix completion problem in Fig. 3k in which
the rows of the matrix represent categories rather than objects.
Mendeleev solved a version of this problem when he used his
periodic table to infer the existence of elements that had not yet
been observed. Mendeleev’s discoveries can be viewed as
inductive inferences about a matrix in which the rows represent
elements and the columns represent features of these elements,
including their atomic weights, specific heats, and melting
points. Although Mendeleev achieved some striking successes,
he also made predictions about several elements that do not
exist in reality, including two elements that were proposed to
be lighter than hydrogen. As for Le Verrier, Mendeleev’s
successful and not-so-successful predictions can both be
viewed as inductive inferences, or inferences to conclusions
that were plausible but not certain, given the available data.
Computational models of human learning are typically
not designed to address the object and category discovery
problems in Fig. 3k and o. These problems, however, have
been addressed by several computational models of scientif-
ic discovery (Langley, Simon, Bradshaw, & Zytkow, 1987,
Valdés-Peréz, Zytkow, & Simon, 1993). For example, the
MENDEL system has been used to model the discovery of
genes, and the GELL-MANN system has been used to model
the discovery of subatomic particles such as quarks (Fischer
& Zytkow, 1992). Researchers have argued that the infer-
ences made by some of these models are consistent with
historical evidence about the human discoveries that inspired
these approaches, but as yet few empirical studies have
evaluated these models as psychological proposals.

Simultaneous object, feature, and category discovery. The
discovery problems in Fig. 3i-k focus on a single feature,
object, or category, but in general a reasoner may need to
simultaneously discover multiple objects, features, and cate-
gories. Figure 31 shows an instance of this problem in which a
reasoner must discover an unobserved object, an unobserved
feature, and an unobserved category. The problem in Fig. 3p is
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similar, except the rows of the matrix in Fig. 31 now corre-
spond to categories rather than objects.

Because object discovery is discussed only rarely in the
literature, it is not surprising that problems that include object
discovery as a component have received almost no attention.
Problems of this kind, however, are sometimes encountered in
the real world. For example, given the genomes of several
present-day species, scientists may discover new features that
correspond to genetic sequences that are conserved across
species, and they may use these features to infer the existence
of ancestral species that have never directly been observed.
Jern and Kemp (2013) recently developed a study that ex-
plored a very simple version of this problem. Participants in
the study were shown objects like the example in Fig. 4b.
These objects were described as the genomes for different
kinds of flu viruses, and each one was constructed by com-
bining a horizontal pair of letters (e.g., O J in the second row
in the figure) with a vertical pair (e.g., D B in the first column).
Participants were not informed that the individual letters were
paired in this way, and recognizing that the pairs existed was
an instance of feature discovery. After studying the observed
genomes, participants were asked to draw a genome for a
virus that had not yet been observed but was likely to exist.
The results in Fig. 4b show that the majority of participants
combined a known horizontal pair with a known vertical pair
to create a new genome, suggesting that they were able to use
the features that they had discovered to make inferences about
unobserved objects. Because participants were specifically
asked to draw an unobserved genome, the experiment did
not address the problem of object discovery in its purest form.
We expect, however, that similar results would be achieved if
participants were first asked to decide whether unobserved
genomes were likely to exist, and were only asked to draw
such a genome if they answered in the affirmative.

Identification

Imagine that the objects in a set are repeatedly encountered, and
that every time a reasoner encounters an object, he or she
observes a feature of the object that he or she had not previously
noticed. So far we have assumed that each observation of this
kind allows the reasoner to fill in one entry in a matrix of
objects by features. In general, however, a reasoner may en-
counter an object multiple times without identifying it as the
same object each time. In other words, a reasoner may encoun-
ter multiple object tokens without knowing that all of these
tokens are instances of the same object. As in the previous
sections, the information available to the reasoner can still be
viewed as incomplete information about a matrix of objects by
features. Allowing for uncertainty about token identity, how-
ever, introduces a new set of inductive problems.

All of the generalization problems discussed previously
have counterparts involving tokens. For example, Gn(O7, f)

is a version of the generalization problem in Fig. 3a in which
the rows of the matrix represent object tokens rather than
objects. Although the problems in Fig. 3b—h also have coun-
terparts involving tokens, discussing each problem in detail
would add relatively little to our previous discussion of gener-
alization. Instead, we will focus on the inductive problem of
identification, which is qualitatively different from the prob-
lems previously considered in this article.

Identification problems arise when a reasoner observes
object tokens, feature tokens, or category tokens and must infer
which tokens are instances of the same entity. For simplicity,
we begin by considering problems in which a single token is
observed, and a reasoner must decide whether this token is an
instance of a previously observed object, feature, or category.

Feature identification. Feature identification is a problem in
which a reasoner must infer the identity of a feature token
after observing that the token applies to a certain set of
objects. For example, if told that Sarah Ferguson, Julianne
Moore, and Conan O’Brien all have feature F, a reasoner
might guess that feature ' is “red hair.” We label this prob-
lem as 1d(O, f7), in which Id is short for identification, the O
indicates that the problem concerns a matrix in which the
rows represent objects, and the lowercase frindicates that the
problem focuses on an inference about a single feature token.
Figure 3q shows an example in which the double-headed
arrow indicates that a reasoner must decide whether feature
token f71is an instance of feature fs. The matrix in Fig. 3q is
fully observed, but in general the matrix may contain gray
elements that represent entries that have not been observed.

Problem Id(C, f7) in Fig. 3u is a version of the identification
problem in Fig. 3q in which the rows of the matrix represent
categories rather than objects. Kemp, Chang, et al. (2010)
studied this problem using a task in which participants were
given several categories that have a certain feature (e.g.,
swans, polar bears, and doves all have feature F) and were
then asked to guess the feature in question (' might be a token
of the feature “white”). Feature identification has also been
studied using the “word context task” (Werner & Kaplan,
1952), which requires participants to infer the meaning of a
nonsense word after hearing it used in context. For example,
after hearing that “elephants are big and zazzy,” a child may be
able to infer that “zazzy” is another word for “strong” (Braun-
Lamesch, 1962).

As the word context task suggests, feature identification is
a problem that regularly arises when learning new words. Any
student learning a second language will frequently encounter
new labels for familiar features. For example, a student learn-
ing German may need to infer that rof and schwarz correspond
to features that would be labeled “red” and “black” in English.
In cases of this kind, rot and schwarz can be viewed as tokens
of features that the reasoner already knows. The same general
phenomenon arises during first language learning, when
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learners are exposed to linguistic labels for features that they
have already noticed. For example, a child may have noticed
that tomatoes, radishes, and cherries all share a certain feature.
When she later hears the word “red,” she may be able to
recognize that this novel label is a token of a feature that she
already knows. Many researchers have proposed that word
learning often involves mapping linguistic labels onto
preexisting concepts (Bloom, 2000; Fodor, 1975; MacNamara,
1972; Merriman, Schuster, & Hager, 1991; Mervis, 1987,
Snedeker & Gleitman, 2004), and in our taxonomy this map-
ping problem corresponds to a problem of identification.

Category identification. The category identification problems
in Fig. 3r and v are similar to the feature identification problems
just discussed, but they involve inferences about category to-
kens rather than feature tokens. For example, an English speak-
er who sees a German friend point at a colorful insect and call it
a Schmetterling might infer that Schmetterling is a label for the
category of butterflies. Similarly, if the friend mentions that
kangaroos, koalas, and wombats are all Beuteltiere, the English
speaker might infer that Beuteltiere is a label for the category of
marsupials.

Category identification has been discussed by previous re-
searchers, and it is sometimes called “concept identification”
(Hunt, 1962) or “category recognition” (Maratsos, 2001). Ex-
periments in which participants learn the meanings of novel
words are often viewed as studies of category generalization
(Fig. 3b), but some of these studies are perhaps better viewed
as cases in which participants learn new labels for preexisting
categories (Bloom, 2000; Maratsos, 2001). For example, re-
searchers have documented cases of “fast mapping” in which
children learn novel words after hearing them used on a single
occasion (Carey & Bartlett, 1978; Heibeck & Markman,
1987). 1t is difficult to understand how a child could acquire
a novel category given a single exemplar, but easier to under-
stand how a single example could allow a child to map a novel
label onto a preexisting category.

Although category identification may play a role in many
experimental studies of word learning, we are aware of few
studies that have been explicitly designed as studies of cate-
gory identification. One relevant task is based on a television
game show called Pyramid. Contestants in this show are given
several exemplars of a category (e.g., cymbals, glockenspiel,
and timpani) and then asked to guess the category from which
the exemplars are drawn (e.g., percussion instruments). Guess-
ing games of this kind have been used in classrooms as
vocabulary-building exercises (Marzano & Pickering, 2005),
but to our knowledge have not yet been used in studies of
inductive reasoning.

Object identification and category identification. Object

identification is a problem in which a reasoner must infer
that an object token is an instance of a previously observed

@ Springer

object. Figure 3s shows an example in which the object token
appears as the final row of the matrix. A well-known histor-
ical example of object identification is the inference that the
morning star and the evening star are the same object. In
terms of our framework, the relevant inductive problem can
be characterized using a matrix like the one in Fig. 3s, in
which one row represents the bright star that is observed
before sunrise, another row represents the bright star that is
observed after sunset, and the columns represent the features
(e.g., brightness and position) of these stars. The Greeks
originally used data of this kind to infer that the two stars
were different objects that they called Phosphorus and Hes-
perus. Later, however, they came to believe that Phosphorus
and Hesperus were one and the same.

Object identification has been discussed in detail in the
psychological literature. One family of studies refers to the
problem as “absolute judgment” (Miller, 1956) or “absolute
identification” (Luce, Green, & Weber, 1976), and is based on
objects that are simple perceptual stimuli such as lines or tones
(Brown, Marley, Donkin, & Heathcote, 2008; Estes, 1994;
Nosofsky, 1986). A typical experiment might use » lines of
different lengths, each of which is associated with an identifying
label. On each trial, participants observe a token of one of the
lines and are required to provide the identifying label for the
token. In a study of this kind, uncertainty typically arises be-
cause of perceptual noise and memory failures—for example,
because a participant cannot accurately detect and remember the
length of a line. Uncertainty can also arise in the absence of
perceptual noise if some features of the object tokens are
unobserved, and absolute identification has also been studied
in this setting (Kemp et al., 2009).

A second family of studies has focused on visual object
perception. For example, participants might observe one object
token (e.g., a square) moving behind an occluder and a second
object token (e.g., a rectangle) emerging from the other side
(Burke, 1952). Depending on the perceptual features of the two
objects, participants may infer that the two tokens are glimpses
of the same object or glimpses of two different objects. Similar
studies have been carried out with infants (Bower, 1974;
Spelke, Kestenbaum, Simons, & Wein, 1995; Van de Walle,
Carey, & Prevor, 2000; Xu, 2005) and nonhuman animals
(Mendes, Rakoczy, & Call, 2008). The literature on this topic
often refers to the problem of “object individuation” rather than
“object identification.” Some researchers have distinguished
between individuation and identification: For example,
Tremoulet, Leslie, and Hall (2000) proposed that individuation
involves setting up an object representation, and that identifi-
cation involves deciding “which, if any, previously individuat-
ed object is presently encountered” (p. 499). Most of the
literature on individuation, however, is relevant to the problem
that we have called identification.

Instead of discerning the identity of an object token, rea-
soners may simply be asked to indicate whether or not they
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have encountered the object before. The resulting problem is
often called recognition. Although recognition does not ap-
pear in our taxonomy, it is closely related to the problem of
identification, and the two problems are often considered
together (Estes, 1994). Several studies have also established
connections between recognition and the problem that we
have called generalization (Hayes, Fritz, & Heit, 2013; Heit,
Rotello, & Hayes, 2012; Sloutsky & Fisher, 2004).

Figure 3w shows a category identification problem that
corresponds to a version of the problem in Fig. 3s in which
the rows of the matrix represent categories rather than objects.
This problem has been studied in the literature on “naming to
description” (Lambon Ralph, Graham, Ellis, & Hodges, 1998;
Lombardi & Sartori, 2007; Sartori & Lombardi 2004). Experi-
ments in this literature are similar to guessing games. For
example, a participant might be told that a certain kind of animal
has whiskers and catches mice, and might guess that the animal
is a cat. From our perspective, solving this problem requires the
inference that the category mentioned in the task is a token of
the category of cats.

Category identification has also been studied using the “word
context task’ described in a previous section (Werner & Kaplan,
1952). For example, after hearing statements that include “the
painter used a corplum to mix his paints” and “you can make a
corplum smooth with sandpaper,” a reasoner might be able to
identify “corplum” as a label for the category of sticks (Wermer &
Kaplan, 1952). Because “corplum” is a novel label for a familiar
concept, problems of this kind are sometimes called “concept
identification” problems (Bruner et al., 1956).

Simultaneous object, feature, and category identification. The
identification problems in Fig. 3q—s require inferences about
a single object token, feature token, or category token. In
general, however, identification problems may require rea-
soners to reason about multiple tokens of different kinds.
Figure 3t shows an example involving an object token o7 a
feature token f7, and a category token cz and the problem in
Fig. 3x is similar, except that the rows of the matrix represent
categories rather than objects.

Kemp, Chang, et al. (2010) recently explored a version of
the problem in Fig. 3x in which the categories were animal
categories and the features were perceptual, behavioral, and
anatomical features. Participants were given trios of statements
like the example in Fig. 4c. Each trio included a token of an
unidentified category (e.g., “animal A”) and a token of an
unidentified feature (e.g., “feature F”’), and participants were
required to identify the category and the feature. For example,
the most common response to the problem in Fig. 4c indicated
that feature F was “white” and that animal A was a “polar
bear.” The task in Fig. 4c can be viewed as a simplified version
of a real-world problem faced by language learners (Kemp,
Chang, et al., 2010). For example, suppose that a student
watching a German nature program hears that a Schmetterling

is bunt, and also hears Schmetterling and bunt used in several
other contexts. Combining all of this information may allow
the student to identify Schmetterling as a label for the category
“butterfly” and bunt as a label for the feature “colorful.”

Combining generalization, discovery, and identification

The previous sections illustrated how problems that focus on
features, problems that focus on categories, and problems
that focus on objects can be combined to create problems that
require inferences about features, categories, and objects.
For example, Fig. 3d shows how feature generalization,
category generalization, and object generalization can be
combined. The combined problems in the rightmost column
of Fig. 3 all include multiple versions of the same basic
problem: for example, multiple generalization problems,
multiple discovery problems, or multiple identification prob-
lems. The three basic problems, however, can also be com-
bined to generate additional problems.

Discovery and generalization are combined in settings in
which a reasoner must discover new objects and make in-
ferences about their properties. For example, Mendeleev was
able not only to infer the existence of novel elements, but to
make predictions about unobserved properties of these ele-
ments. Discovery and identification are combined in settings
in which reasoners encounter object tokens, and in which
some of these tokens are instances of familiar objects but
others are instances of novel objects. For example, if you are
shown a series of family photographs you might identify the
first individual as your grandfather but decide that you have
never previously seen the second individual. Finally, identi-
fication and generalization are combined in settings in which
reasoners are asked to make inferences about unobserved
properties of confusable objects. For example, suppose that
you know that Tim has diabetes, and you now encounter a
person who is either Tim or his identical twin Tom. You
might infer that this person probably has diabetes either
because this person is Tim (identification) or because this
person is similar to Tim who has diabetes (generalization).

The compound problems just considered are all cases in
which multiple inductive problems arise and in which these
problems are coupled in some way. For example, the diabe-
tes example couples identification and generalization be-
cause your final conclusion depends on both identification
(the person might be Tim, the known diabetic) and general-
ization (even if the person is Tim’s twin Tom, there is still a
good chance that he has diabetes). In other cases, multiple
inductive problems arise, but these problems are not coupled
in any important way. For example, if shown a photograph of
a person wearing glasses, you might recognize the person as
your great-grandfather (identification) and might infer that
the person is probably long-sighted (generalization). Here,
however, the identification judgment and the generalization
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need not be combined in any way, and we therefore view this
example as a case involving two distinct problems instead of
as an instance of a compound problem.

Recognizing that inductive problems can incorporate two or
more basic problems can help to explain experimental results
that would otherwise be puzzling. Consider a feature general-
ization problem (Fig. 3a) in which a reasoner observes that a
source object has a certain feature and is then asked to decide
how likely it is that a target object has the feature. Many studies
of this kind have measured generalization curves that indicate
how generalizations decay as a function of the dissimilarity
between the source object and a target object. Some re-
searchers disagree about whether these generalization gradi-
ents are closer to Gaussian functions or exponential functions
(Nosofsky, 1986; Shepard, 1987). As we mentioned earlier,
one proposed resolution is that pure feature generalization
problems produce exponential curves, but that inferences
about highly confusable objects such as Tim and Tom involve
an identification component, and therefore produce near-
Gaussian generalization curves (Ennis, 1988; Nosofsky,
1988; Shepard, 1986). The literature on this topic suggests
that some inductive tasks require two or more basic prob-
lems to be solved, and that it is important to think clearly
about the inductive problems posed by any given task.

Beyond object—feature matrices

Our taxonomy is organized around the three problems of
generalization, discovery, and identification. We introduced
these problems using semantic systems constructed from
objects, features, and categories, and Fig. 3 is based on
simple systems of this kind. Figure 3, however, shows only
part of our taxonomy. The full taxonomy includes all prob-
lems of generalization, discovery, and identification that
arise with respect to any semantic system, including systems
that incorporate relations and systems that include subsys-
tems as components. The next two sections provide exam-
ples of generalization, discovery, and identification problems
that involve relations and higher-level semantic systems.

Problems involving relations. The semantic systems in
Fig. 3 incorporate two special kinds of relations. The first
relation holds between feature-bearers and features, and
might be called the has relation. For example, in Fig. 3a
object o; has f;. The second relation holds between feature-
bearers and categories, and might be called the is a relation.
For example, in Fig. 3a object 0 is a c».

In addition to these two special relations, semantic sys-
tems may include relations that hold between feature-bearers
and other feature-bearers. Consider first a system that in-
cludes a set of objects, a set of binary features defined over
these objects, and a set of binary relations defined over these
objects. As shown in Fig. 2b, the system can be visualized by
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adding several square matrices of objects by objects to a
matrix of objects by features. For example, the objects might
be a set of individuals, and the relations might include
taller(-,"), older(-,"), sister of(*,"), and friends with(-,"), among
other examples.

Generalization problems arise when some entries in the
square relational matrices are unobserved. One simple case
occurs when the value of a given relation is observed only for
some pairs of objects, and a reasoner must decide whether or
not the relation applies to the remaining pairs of objects
(Kemp, Tenenbaum, Niyogi, & Griffiths, 2010). For exam-
ple, a reasoner might be told that Alice is the sister of Betsy,
and that Chloe is the sister of Betsy, and might then have to
infer whether or not Alice is the sister of Chloe. Four-term
analogy problems provide a second example of relational
generalization (Rumelhart & Abrahamson, 1973; Sternberg
& Gardner, 1983). For example, a reasoner might be given
the problem Alice:Betsy :: Daphne:?, which can be glossed
as “Alice is to Betsy as Daphne is to whom?” This problem is
an example in which a reasoner learns that some relation
R(-,") applies to the pair (Alice, Betsy), and the reasoner
needs to find some person X such that R(Daphne, X). The
examples so far have focused on generalization problems
involving a single relation and multiple pairs of objects, but
other generalization problems might require a reasoner to
make inferences about multiple relations that apply to a
single pair of objects. For example, a reasoner might learn
that Alice is younger than Betsy, and then might have to
decide whether a different relation holds between the pair
(e.g., is Alice smaller than Betsy?).

The problem of discovery can also apply to systems
involving relations. For example, Dalton’s discovery of
atoms was enabled by relational data that captured the out-
come of chemical reactions. A discovery problem may also
require a reasoner to infer the existence of unobserved re-
lations. For example, if Alice and Bob both simultaneously
come down with a very rare illness, we might infer that the
two have recently come into contact in some way. Discov-
ering this contact relation is an instance of the problem of
“relation discovery.”

Finally, the problem of identification also applies to sys-
tems involving relations. Consider, for example, a problem
in which an individual is learning English as a second lan-
guage and is told that “Alice dislikes Betsy” and that “Chloe
admires Daphne.” Even if the learner has not previously
encountered the words “dislikes” and “admires,” he or she
may be able to identify these words as labels for relations that
he or she already knows. Problems of this kind qualify as
instances of “relation identification.”

Problems involving higher-level systems. As we described
earlier, semantic systems can be combined in order to create
a higher-level system that includes features, categories, or
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relations defined over the component systems. The problems
of generalization, discovery, and identification can all arise
when reasoning about these higher-level systems. This sec-
tion describes examples of each problem in which the com-
ponent systems are molecules, and the higher-level system is
a set of molecules along with features of and relations be-
tween these molecules. For example, one of the features
might indicate whether a molecule relieves pain, and one of
the relations might pick out pairs of molecules that react with
each other.

Generalization problems arise when some of the features
that apply to the systems are partially observed. For example,
suppose that a reasoner observes that one of the molecules in
the set relieves pain. Predicting whether or not the other
molecules are likely to relieve pain is an example of gener-
alizing across semantic systems. Problems involving gener-
alization across features can also arise. For example, a rea-
soner who learns that a certain molecule stimulates mu-
receptors might infer that the molecule relieves pain.

Generalization problems involving multiple systems of
objects, features, and relations have been explored exten-
sively in the literature on relational categorization and ana-
logical reasoning (Gentner, 1983; Gentner & Kurtz, 2005;
Holyoak, Lee, & Lu, 2010; Holyoak & Thagard, 1989). A
classic inductive problem considered in this literature re-
quires a reasoner to use what is known about one relational
system (e.g., the solar system) to make inferences about
unobserved aspects of a second system (e.g., an atom).
Analogical inferences of this kind rely on the insight that
the two systems resemble each other in some respect. In
terms of our framework, this resemblance can be formalized
using the idea that both systems belong to a higher-level
category (Christie & Gentner, 2010; Gick & Holyoak,
1983; Kemp & Jern, 2009). Recognizing the existence of
this higher-level category provides the basis for generaliza-
tions about the objects, features, and relations within each
individual system.

Discovery problems arise when reasoning about a higher-
level system that includes lower-level systems or features of
these lower-level systems that were not initially observed.
For example, a reasoner might solve the problem of system
discovery by inferring the existence of new kinds of mole-
cules, such as buckminsterfullerene. Similarly, a reasoner
might notice that certain molecules contain a ring of carbon
atoms, and thereby discover a feature that was not part of the
original description of the system.

Identification problems arise when a reasoner encounters
tokens of systems and must decide which tokens are in-
stances of the same molecule. For example, suppose that a
chemist has created a microscopic pen that includes two
molecules of methane: One molecule includes a carbon-12
atom, and the other includes a carbon-13 atom. If the rea-
soner has access to a device that allows individual molecules

to be viewed, he or she may be required to identify the
molecule currently being viewed as either the carbon-12 or
the carbon-13 molecule. Problems of this kind qualify as
instances of “system identification.”

For simplicity, this section has focused on problems in-
volving multiple low-level systems (e.g., multiple molecules)
in which each object (e.g., each atom) belongs to a single low-
level system. We can also formulate problems in which a
given object can belong to multiple low-level systems. For
example, when thinking about animals and their properties, it
may be useful to distinguish between a taxonomic system that
includes categories such as “mammal” and “reptile” and an
ecological system that includes categories such as “predator”
and “sea creature” (Heit & Rubinstein, 1994; Lopez, Atran,
Coley, Medin, & Smith, 1997; Shafto, Kemp, Mansinghka, &
Tenenbaum, 2011). Any given animal will appear in both
systems, and some inductive problems draw on both of these
systems. For example, a reasoner might combine taxonomic
knowledge and ecological knowledge to make the plausible
inference that dolphins have especially large lungs. Our tax-
onomy allows for high-level semantic systems that include
overlapping or cross-cutting low-level systems, but inferences
about these high-level systems do not appear to introduce
problems that are qualitatively different from the inductive
problems already discussed.

Unified accounts of inductive reasoning

An important motivation for developing a taxonomy of
inductive reasoning is to characterize the space of inferences
that psychological theories should aim to explain. Our tax-
onomy is intended to be relatively theory-neutral, and we
hope that researchers of different theoretical persuasions will
agree that accounting for the full space of inferences is a
worthy challenge for theories of human reasoning. For ex-
ample, researchers who work with probabilistic models,
exemplar models, and connectionist models may be able to
agree that the phenomena in the taxonomy need to be
explained, even if they disagree about the most promising
way to develop a unified theory of inductive reasoning.
Our taxonomy highlights three challenges that must be
addressed by any unified theory of inductive reasoning. We
will refer to these challenges as the representation challenge,
the knowledge challenge, and the inference challenge. The
taxonomy is based on inferences about systems of objects,
features, categories, and relations, and these systems can take
many forms. For example, we argued earlier that semantic
systems can include higher-level features, categories, and re-
lations defined over lower-level systems, and this process of
introducing higher-level features, categories, and relations can
continue indefinitely. In order to address the representation
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challenge, a unified account of inductive reasoning must be
able to represent the full collection of possible semantic
systems.

The taxonomy characterizes inductive problems without
specifying the knowledge required to solve these problems.
Inductive reasoning, however, depends critically on back-
ground knowledge, and for the problems in our taxonomy,
the relevant background knowledge is knowledge about
systems of objects, features, categories, and relations. This
knowledge can take many forms, and may include causal
knowledge (e.g., large animals tend to be heavy), associative
knowledge (animals with hooves tend to eat plants), taxo-
nomic knowledge (bats are mammals), knowledge about
similarity (horses and zebras are similar), and intuitive or
scientific theories (e.g., theories about how parents pass on
properties to their offspring). In order to address the knowl-
edge challenge, a unified account of inductive reasoning
must be able to capture the many different kinds of back-
ground knowledge that people bring to inductive problems.

The taxonomy aims to include all problems in which a
reasoner is given an incomplete specification of a semantic
system and is asked to infer a complete specification of the
system. Given any fully specified system of objects, features,
categories, and relations, there are many ways to create
incomplete specifications by concealing different aspects of
the system. In order to address the inference challenge, a
unified account of inductive reasoning must be able to han-
dle queries about unobserved aspects of any incompletely
specified system.

No existing computational model accounts for all of the
problems in our taxonomy, but probabilistic models, exem-
plar models, and connectionist models have all been able to
account for human inferences about multiple inductive prob-
lems. This section briefly considers all three approaches, and
argues that the probabilistic approach offers the most direct
route toward a unified account that addresses the three chal-
lenges just described.

Probabilistic models have been applied to many of the
problems in Fig. 3, including generalization (Heit, 1998;
Kemp et al., 2012; Shepard, 1987), discovery (J. R. Anderson,
1991; Austerweil & Griffiths, 2011; Kemp et al., 2009), and
identification (Kemp, Chang, et al., 2010; Kemp et al., 2009).
These models take many forms, but all of them specify a prior
distribution over a space of semantic systems and update this
distribution using probabilistic inference when evidence is
observed. The probabilistic approach is compatible with
many different representational proposals, including the idea
that semantic systems are mentally represented in a compo-
sitional representation language such as predicate logic.
Compositionality is the classic solution to the representation
challenge: A compositional representation language includes
symbols for objects, features, categories, and relations, and a
vast number of semantic systems can be represented by

@ Springer

combining these symbols in different ways. The probabilistic
approach highlights the role of background knowledge, and
the prior distribution required by a probabilistic model pro-
vides a flexible way to capture many kinds of background
knowledge. For example, researchers have worked with
priors that capture causal knowledge (Glymour, 2001;
Holyoak & Cheng, 2011; Sloman, 2005), associative knowl-
edge (Y. Xu & Kemp, 2010), taxonomic knowledge (Kemp
& Tenenbaum, 2009), knowledge about similarity (Shepard,
1987), and theories, both intuitive (Tenenbaum, Griffiths, &
Kemp, 2006) and scientific (Howson & Urbach, 1993).
Finally, probabilistic inference provides a solution to the
inference challenge. Given a prior distribution over a space
of semantic systems and a set of assumptions about how
observations are generated, general-purpose probabilistic
inference can be used to reason about any unobserved aspect
of a given system. The probabilistic approach is therefore
capable of addressing all three of the challenges previously
identified, and it offers a promising path toward a unified
account of inductive reasoning.

Exemplar- or instance-based models have also been used
to account for multiple inductive problems, including gener-
alization and identification (Estes, 1994; Nosofsky, 1992).
The key idea that motivates the exemplar-based approach is
that inferences about novel objects, features, categories, re-
lations, or semantic systems are based on similar, previously
encountered objects, features, categories, relations, or sys-
tems. An influential version of the exemplar-based approach
proposes that objects are represented as points in a continu-
ous similarity space (Nosofsky, 1986), but exemplar models
can also be defined over representations constructed in a
compositional representation language (Aamodt & Plaza,
1994). As a result, the exemplar-based approach can address
the representational challenge in just the same way as the
probabilistic approach. Compared with the probabilistic
approach, however, the exemplar-based approach offers a
less complete solution to the knowledge challenge. The
background knowledge used by an exemplar model is car-
ried by previously observed objects, features, categories,
relations, or systems, and specific observations of this kind
seem incapable of capturing the abstract knowledge that
shapes some inductive inferences. For example, Newtonian
mechanics is a classic example of a body of abstract knowl-
edge, and this knowledge has supported inferences about
generalization problems (Newton inferred the mass of the
sun), discovery problems (Le Verrier inferred the existence
of Neptune), and identification problems (Halley inferred
that three comets observed in 1531, 1607, and 1682 were
actually the same object). It is far from clear how an
exemplar-based approach might account for inferences of
this kind, as well as for everyday inferences that rely on
intuitive rather than scientific theories (Carey, 1985; Gopnik
& Meltzoft, 1997). Finally, the exemplar-based approach is
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capable of addressing the inference challenge. Given a se-
mantic system with several hidden elements, comparisons
with previously encountered systems provide a general-
purpose method for filling in the hidden elements.

The connectionist approach provides a third computational
perspective on inductive reasoning, and connectionist models
have been used to account for multiple inductive problems,
including generalization (Rogers & McClelland, 2004), iden-
tification (Lacouture & Marley, 1991), and relational learning
(Doumas, Hummel, & Sandhofer, 2008). Connectionist
models can take many different forms, but our discussion will
focus on the work of Rogers and McClelland, who provided a
comprehensive treatment of semantic cognition and inductive
reasoning. Their connectionist theory proposes that semantic
knowledge is carried by the connection weights in a network
of simple units and that inductive inferences arise from a
process in which each unit communicates with its neighbors.
Although Rogers and McClelland showed that their network
accounts for certain kinds of generalization problems, their
approach falls short of a unified account of induction. Their
approach does not address the representation challenge in full,
because it is not clear how the distributed representations that
they advocate can capture the full collection of possible se-
mantic systems, including systems with higher-level features,
categories, and relations defined over lower-level systems.
Their approach also fails to address the knowledge challenge
in full, because it is not clear how patterns of weights in a
network can capture all of the kinds of knowledge that shape
inductive reasoning, including scientific and intuitive theories.
Finally, the specific models implemented by Rogers and
McClelland fail to address the inference challenge. These
models are feedforward networks in which the units
representing features appear among the output units. As a
result, these models do not handle inference problems in
which some of the features of a novel object are observed
and the task is to predict which other features the object might
have. Rogers and McClelland acknowledged this limitation
but suggested that the feedforward nature of their networks is
a simplification, and that their underlying theoretical approach
would be better captured by a recurrent network. Recurrent
networks address the inference challenge, because these net-
works can make inferences about any subset of variables that
happens to be unobserved. Overall, then, the connectionist
approach is able to address the inference challenge, but it
seems less capable of addressing the representation and
knowledge challenges.

Although we have argued that the probabilistic approach
provides the most promising path toward a unified theory of
inductive reasoning, probabilistic inference per se can contrib-
ute only a small part of this theory. The greater part of the
theory will need to be a set of principles that address the
knowledge challenge and characterize the background knowl-
edge that reasoners bring to inductive problems. As we

suggested earlier, this knowledge may take many forms which
range from simple associative links to complex scientific
theories, and it seems unlikely that a single formalism will
be able to elegantly capture all of these varieties of back-
ground knowledge. As a result, aiming for a single, unified
probabilistic model of inductive reasoning may be a mistake.
A better research strategy may be to aim for a family of
models that rely on a single inference strategy—mnamely, prob-
abilistic inference—but that incorporate priors induced by a
variety of different knowledge structures. For example, prob-
abilistic models have been applied to many of the problems in
Fig. 3, but these models have relied on problem-specific prior
distributions, and it is hard to see how all of these distributions
could be interpreted as special cases of a general-purpose
method for specifying prior distributions.

Just as inductive inferences may draw on many qualitative-
ly different kinds of background knowledge, inductive infer-
ences may be carried out by multiple qualitatively different
processes. For example, classical conditioning can be viewed
as a kind of inductive learning, and the processes responsible
for classical conditioning may be rather different from the
processes that support scientific discovery (although see
Holland et al., 1986). Statisticians and computer scientists
have demonstrated that probabilistic inference can be
implemented using many different processes, and it may turn
out that all of the different psychological processes that sup-
port inductive reasoning can be usefully characterized as
forms of probabilistic inference. For example, researchers
have developed probabilistic models that span the range of
inferences from classical conditioning (Courville, Daw, &
Touretzky, 2006) to scientific discovery (Glymour, 2001).
Even if the probabilistic approach succeeds in providing a
unifying perspective on inductive reasoning, demonstrating
that a given inference is consistent with probabilistic reason-
ing is at best a starting point. To turn this demonstration into a
fully specified psychological account, it will be necessary to
characterize the knowledge structures involved and the infer-
ence processes that operate over these structures. It seems
likely that many qualitatively different structures and process-
es will need to be invoked in order to explain how humans
solve all of the problems in our taxonomy.

Acquiring mental representations

Our taxonomy deliberately focuses on problems that can be
formulated extensionally as inferences about unobserved ele-
ments of a semantic system. As we mentioned in the previous
section, our hope is that researchers from multiple theoretical
persuasions can agree on our characterization of these prob-
lems, even if they hold very different opinions about the
nature of the mental representations that support solutions to
these problems. For example, categorization researchers may

@ Springer



Psychon Bull Rev

agree that people often need to decide whether a given cate-
gory label applies to a novel object, even if they disagree
about whether the intension of the category corresponds to a
rule, a prototype, or a set of exemplars.

Although we have focused on problems that can be for-
mulated without referring to mental representations, the need
to acquire these representations leads to additional inductive
problems. Consider, for example, the problem of learning the
intension of a rule-based category. A reasoner who has
solved this problem might be able to report that an object is
a wug if and only if it is green with red stripes. As a second
example, consider a reasoner who is able to predict that a
novel flying animal probably has wings. The mental repre-
sentation that supports this ability may correspond to a
causal network over features, and learning this causal net-
work is an inductive problem.

Psychologists continue to debate the psychological reality
of structured representations such as rules and causal networks
(Hahn & Chater, 1998; Rogers & McClelland, 2004; Smith,
Langston, & Nisbett, 1992). As a result, we believe that it is
impossible to develop a general account of representation
learning that will be acceptable to the broad community of
researchers who study semantic cognition. Researchers who
postulate the existence of structured representations, however,
may find it useful to explore the probabilistic approach to
representation learning. In the previous section, we argued
that probabilistic inference helps to explain how structured
representations are used for inductive inference, and the same
general approach can also explain how these representations
are acquired (Kemp & Tenenbaum, 2009; Tenenbaum, Kemp,
Griffiths, & Goodman, 2011). For example, researchers have
developed probabilistic models that help to explain how log-
ical rules (Goodman, Tenenbaum, Feldman, & Griffiths,
2008) and causal networks (Deverett & Kemp, 2012; Griffiths
& Tenenbaum, 2005) are acquired.

The problem view and the process view

As we described in the introduction, our taxonomy adopts the
problem view of induction and attempts to characterize the
space of inductive problems. Given that inductive reasoning is
likely to be supported by many different processes, it will also
be useful to develop taxonomies that adopt the process view
and that assign two inferences to the same class if they are
carried out by the same underlying process. Our taxonomy
does not meet this criterion, because two inferences that are
supported by very different processes may be assigned to the
same cell in Fig. 3. For example, generalizations about unfa-
miliar objects may rely on the rapid computation of visual
similarity: If object X has feature F and object Y looks similar
to X, then Yis likely to have feature F. Generalizations about
familiar objects may involve the explicit formation and
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evaluation of hypotheses: For example, if salmon have F,
maybe grizzly bears have F if feature F' can be transmitted
from prey to predator (Medin, Coley, Storms, & Hayes, 2003;
Shafto, Kemp, Bonawitz, Coley, & Tenenbaum, 2008). Al-
though the processes involved in these generalizations may be
rather different, our taxonomy classifies both inferences as
instances of feature generalization.

In other cases, problems assigned to different cells in our
taxonomy may be addressed using similar or identical pro-
cesses. For example, we previously suggested that Le Verrier
solved a discovery problem when he inferred the existence of
Neptune, and that Halley solved an identification problem
when he inferred that three comets were one and the same.
Both problems were solved using a process that involved
explicit mathematical computation. More generally, scientif-
ic problems appear in all of the cells in our taxonomy, and the
same basic processes of hypothesis formation and evaluation
may be relevant to many of these problems.

Although our taxonomy is not organized around psycho-
logical processes, in the introduction we described four con-
tributions that problem-based taxonomies can make to the
psychological literature on induction. Here we review two of
those contributions and suggest that they are especially rele-
vant to researchers who develop process models of induction.
First, our taxonomy lays out the problems that process models
will need to address, including several problems that have
previously received little attention. Identifying novel prob-
lems may not be especially useful if those problems are
contrived or theoretically unilluminating. The novel problems
in our taxonomy, however, are all in the neighborhood of more
familiar problems, and many of them raise theoretical ques-
tions that follow naturally from existing work on induction.
For example, the novel problems in Fig. 3a and c highlight
questions about how multiple sources of knowledge are inte-
grated in order to make inductive inferences (Kemp, Chang,
etal., 2010; Kemp et al., 2012). Second, our taxonomy high-
lights relationships between inductive problems, and therefore
motivates theoretical accounts that handle two or more of
these problems. For example, the problems of feature gener-
alization, category generalization, and object generalization
are conceptually similar according to our taxonomy, which
suggests that it may be useful to develop process models that
can handle all three problems.

The origin of semantic systems

Our taxonomy is founded on the idea that inductive problems
can be characterized as inferences about partially observed
semantic systems. We have taken these semantic systems as a
starting point, but it is important to consider how these sys-
tems might arise. The systems discussed in this article have
included objects, features, categories, and relations, and some
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of these conceptual elements can be acquired by solving
discovery problems. For example, we have suggested that
solving discovery problems allows learners to infer the exis-
tence of objects that they have not directly observed, and to
recognize novel categories and features. Some conceptual
elements, however, must be acquired by means other than
discovery. In particular, the very first discovery problem en-
countered by a learner requires an inference about a partially
observed semantic system that is not acquired via discovery.

Aside from discovery, the elements of semantic systems
can arise in at least two distinct ways. Some of these cle-
ments may be provided by the perceptual system. For exam-
ple, the visual system may supply information about objects
and their features that can serve as the basis for subsequent
inductive inferences (Spelke, 1990). Other conceptual ele-
ments may be supplied by direct instruction. For example, a
child may be told directly that dolphins are mammals, and
that dirt has tiny bugs inside that make people sick.

Both of these pathways to semantic knowledge involve
inductive inferences that are not captured by our taxonomy.
For example, inductive inferences are needed to infer the
shape and color of an object if it is partially occluded and the
spectrum of the illuminating light is not known. Similarly,
accepting a teacher’s claim that dolphins are mammals may
require an inductive inference that the teacher is telling the
truth. Semantic systems are a useful starting point when
considering the kind of inductive problems that are discussed
in the literature on semantic cognition, but a complete ac-
count of inductive reasoning will need to explain in full how
these systems are constructed.

Complexity of inductive problems

Our taxonomy includes a variety of problems, and it is
natural to ask whether some of these problems are intrinsi-
cally more difficult than others. Each problem requires in-
ferences about unobserved elements of a semantic system,
and in this section we discuss whether some semantic sys-
tems are more difficult than others to think about and wheth-
er some ways of concealing the elements of a semantic
system make for especially difficult inductive problems. Of
necessity, proposals about the cognitive complexity of an
inductive problem will depend on assumptions about cogni-
tive processing. The proposals in this section therefore illus-
trate the kind of connections that might exist between the
problem and process views of inductive reasoning.
Semantic systems like those in Fig. 1 are built from objects,
categories, features, and relations, and some of these systems
appear to be intrinsically more complex than others. For
example, the system in Fig. le includes a category defined
over compound objects, and it is therefore more complex than
the system in Fig. la, which does not include compound

objects. Similarly, systems that include higher-order features,
relations, or categories will tend to be more complex than
systems that do not incorporate higher-order elements. Com-
plex semantic systems will tend to be difficult to fit into
working memory, and will therefore be relatively difficult to
reason about. Halford, Wilson, and Phillips (1998) have de-
veloped a complexity metric that captures this idea, and have
argued that young children and nonhuman primates find it
difficult to think about systems that are high in complexity
according to their metric.

Most of the examples discussed by Halford et al. (1998)
involve deductive tasks rather than inductive tasks, but some
evidence suggests that a similar complexity ordering applies
to inductive tasks. For example, Gentner, Rattermann,
Markman, and Kotovsky (1995) developed a task in which
children were shown two sets of three objects and were asked
to pick a target object in Set 2 that matched a source object
from Set 1. Some problems could be solved using a relation
between objects; for example, children could pick a target
object from Set 2 that was identical to the source object from
Set 1. Other problems could only be solved using a higher-
order relation between relations. For example, the source and
target objects might both be the largest objects in their respec-
tive sets. Gentner et al. found that the ability to think about
higher-order relations increases with age, and similar results
have been reported by other psychologists (Piaget,
Montangero, & Billeter, 1977; Sternberg & Nigro, 1980).
Comparative psychologists have provided converging evidence
that suggests that higher-order relations are intrinsically more
difficult to think about than relations between objects. For
example, Penn, Holyoak, and Povinelli (2008) suggested
that there is no compelling evidence that nonhuman
animals can reason about higher-order relations in a
systematic way.

In addition to considering the relative complexity of dif-
ferent semantic systems, we can consider the relative com-
plexity of different inductive problems that are formulated
with respect to the same semantic system. Our taxonomy is
organized around the problems of generalization, discovery,
and identification, and discovery appears to be the most
challenging of the three. Developmental studies suggest that
generalization problems (Cohen, Gelber, & Lazar, 1971) and
identification problems (Spelke et al., 1995) can be solved
before the age of four months, but we know of no studies that
have suggested that discovery problems can be solved before
the age of eight months (Csibra & Volein, 2008). Compara-
tive psychologists have provided converging evidence that
discovery is more difficult than generalization or identifica-
tion. For example, nonhuman primates can solve generaliza-
tion (Sigala, Gabbiani, & Logothetis, 2002) and identifica-
tion (Mendes et al., 2008) problems, but Premack (2010)
wrote that “there is no suggestion that chimpanzees are
capable of inferring unobserved objects” (p. 27).
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Although discovery problems often seem to be more chal-
lenging than generalization or identification problems, this
difference in complexity is at best a rule of thumb. Some
discovery problems are relatively simple, and some generali-
zation and identification problems are relatively challenging.
For example, a discovery problem in which infants use gaze
direction to infer the existence of an unobserved object (Csibra
& Volein, 2008) seems simpler than the identification problem
solved by Halley. Deciding which of two problems is easier
will typically require consideration of factors that go beyond
our taxonomy, including the background knowledge that rea-
soners bring to the problems and the ways in which this
background knowledge must be put to use.

We have argued that humans are able to solve all of the
problems included in our taxonomy, but it is possible that
inductive problems exist outside of this taxonomy that are
too complex for humans to solve. There will certainly be
problem instances that are impossible for humans to solve
without external assistance—for example, generalization
problems that require a reasoner to draw together a body of
evidence that is simply too large for any one person to learn
and remember. We propose, however, that there are no gen-
eral classes of inductive problems that humans are unable to
solve. Inductive reasoning is shaped by factors that operate
across many cognitive domains, including constraints on
working memory and other aspects of executive function.
These constraints, however, are not specific to induction, and
we propose that no induction-specific constraints limit the
class of problems that people are able to solve. Consistent
with this view, our taxonomy is motivated by the goal of
capturing a/l inductive problems that can be formulated as
inferences about unobserved aspects of a semantic system.

Extending the taxonomy

Our taxonomy includes a wide range of problems but will
need to be extended to cover the full space of inductive
inferences that humans are able to make. Three extensions
in particular seem especially important. First, the semantic
systems in this article are static, and an obvious extension
would be to allow for semantic systems that vary over time.
Second, the semantic systems in this article all capture the
state of the world, but an extended taxonomy would allow
for inferences about what another person believes or knows
about the world. One way to accommodate these inferences
would be to add “agents” to the set of conceptual building
blocks that currently includes objects, features, categories,
and relations. Each agent maintains a semantic system that
captures its knowledge and beliefs about the world, and
agents can also make inferences about the semantic systems
possessed by other agents. Finally, this article has focused on
inferences about semantic systems that capture the actual
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state of the world. An extended taxonomy that includes the
notion of possible worlds could accommodate modal infer-
ences (Kemp, Han, & Jern, 2011) and inferences about how
the world might have been under various counterfactual
scenarios (Pearl, 2000; Rips, 2010).

Conclusion

Psychologists dream of developing unified theories of cog-
nition (Newell, 1989), and our long-term goal is only slightly
more modest: We dream of a unified theory of inductive
reasoning. In order to reach this goal, it will be necessary
to understand the space of inductive problems that people are
able to solve. We have taken a step in this direction by
providing a taxonomy of inductive problems that arise with-
in the domain of semantic cognition.

Our taxonomy is founded on two core ideas. We began by
proposing that semantic knowledge consists of knowledge
about objects, features, categories, and relations, and that
these conceptual elements can be organized into semantic
systems. We then proposed that inductive problems can be
characterized as inferences about partially observed semantic
systems. All of the problems in our taxonomy are closely
related, and it is surprising that some of them have received
little previous attention. Future work can aim to explore all of
these problems in detail.

This article focused on characterizing inductive problems
instead of describing how they can be solved, but we sug-
gested that a probabilistic approach provides a promising
way to work toward a formal framework that addresses all
of the problems in our taxonomy. Previous researchers have
described probabilistic models that can address many of the
individual problems in our taxonomy, and developing a
family of models that collectively address all of these prob-
lems is a worthy challenge for future research.
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