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Abstract

Humans are typically able to infer how many objects their environment contains
and to recognize when the same object is encountered twice. We present a sim-
ple statistical model that helps to explain these abilities and evaluate it in three
behavioral experiments. Our first experiment suggests that humans rely on prior
knowledge when deciding whether an object token has been previously encoun-
tered. Our second and third experiments suggest that humans can infer how many
objects they have seen and can learn about categories and their properties even
when they are uncertain about which tokens are instances of the same object.

From an early age, humans and other animals [1] appear to organize the flux of experience into a
series of encounters with discrete and persisting objects. Consider, for example, a young child who
grows up in a home with two dogs. At a relatively early age the child will solve the problem of object
discovery and will realize that her encounters with dogs correspond to views of two individuals rather
than one or three. The child will also solve the problem of identification, and will be able to reliably
identify an individual (e.g. Fido) each time it is encountered.

This paper presents a Bayesian approach that helps to explain both object discovery and identifica-
tion. Bayesian models are appealing in part because they help to explain how inferences are guided
by prior knowledge. Imagine, for example, that you see some photographs taken by your friends
Alice and Bob. The first shot shows Alice sitting next to a large statue and eating a sandwich,
and the second is similar but features Bob rather than Alice. The statues in each photograph look
identical, and probably you will conclude that the two photographs are representations of the same
statue. The sandwiches in the photographs also look identical, but probably you will conclude that
the photographs show different sandwiches. The prior knowledge that contributes to these infer-
ences appears rather complex, but we will explore some much simpler cases where prior knowledge
guides identification.

A second advantage of Bayesian models is that they help to explain how learners cope with un-
certainty. In some cases a learner may solve the problem of object discovery but should maintain
uncertainty when faced with identification problems. For example, I may be quite certain that I have
met eight different individuals at a dinner party, even if I am unable to distinguish between two
guests who are identical twins. In other cases a learner may need to reason about several related
problems even if there is no definitive solution to any one of them. Consider, for example, a young
child who must simultaneously discover which objects her world contains (e.g. Mother, Father, Fido,
and Rex) and organize them into categories (e.g. people and dogs). Many accounts of categorization
seem to implicitly assume that the problem of identification must be solved before categorization
can begin, but we will see that a probabilistic approach can address both problems simultaneously.

Identification and object discovery have been discussed by researchers from several disciplines,
including psychology [2, 3, 4, 5, 6], machine learning [7, 8], statistics [9], and philosophy [10].
Many machine learning approaches can handle identity uncertainty, or uncertainty about whether
two tokens correspond to the same object. Some approaches such such as BLOG [8] are able in
addition to handle problems where the number of objects is not specified in advance. We propose
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that some of these approaches can help to explain human learning, and this paper uses a simple
BLOG-style approach [8] to account for human inferences.

There are several existing psychological models of identification, and the work of Shepard [11],
Nosofsky [3] and colleagues is probably the most prominent. Models in this tradition usually focus
on problems where the set of objects is specified in advance and where identity uncertainty arises
as a result of perceptual noise. In contrast, we focus on problems where the number of objects
must be inferred and where identity uncertainty arises from partial observability rather than noise.
A separate psychological tradition focuses on problems where the number of objects is not fixed in
advance. Developmental psychologists, for example, have used displays where only one object token
is visible at any time to explore whether young infants can infer how many different objects have
been observed in total [4]. Our work emphasizes some of the same themes as this developmental
research, but we go beyond previous work in this area by presenting and evaluating a computational
approach to object identification and discovery.

The problem of deciding how many objects have been observed is sometimes called individua-
tion [12] but here we treat individuation as a special case of object discovery. Note, however, that
object discovery can also refer to cases where learners infer the existence of objects that have never
been observed. Unobserved-object discovery has received relatively little attention in the psycho-
logical literature, but is addressed by statistical models including including species-sampling mod-
els [9] and capture-recapture models [13]. Simple statistical models of this kind will not address
some of the most compelling examples of unobserved-object discovery, such as the discovery of the
planet Neptune, or the ability to infer the existence of a hidden object by following another person’s
gaze [14]. We will show, however, that a simple statistical approach helps to explain how humans
infer the existence of objects that they have never seen.

1 A probabilistic account of object discovery and identification

Object discovery and identification may depend on many kinds of observations and may be sup-
ported by many kinds of prior knowledge. This paper considers a very simple setting where these
problems can be explored. Suppose that an agent is learning about a world that contains nw white
balls and n − nw gray balls. Let f(oi) indicate the color of ball oi, where each ball is white
(f(oi) = 1) or gray (f(oi) = 0). An agent learns about the world by observing a sequence of object
tokens. Suppose that label l(j) is a unique identifier of token j—in other words, suppose that the
jth token is a token of object ol(j). Suppose also that the jth token is observed to have feature value

g(j). Note the difference between f and g: f is a vector that specifies the color of the n balls in the
world, and g is a vector that specifies the color of the object tokens observed thus far.

We define a probability distribution over token sequences by assuming that a world is sampled from
a prior P (n, nw) and that tokens are sampled from this world. The full generative model is:

P (n) ∝

{

1
n

if n ≤ 1000
0 otherwise

(1)

nw |n ∼ Uniform(0, n) (2)

l(j) |n ∼ Uniform(1, n) (3)

g(j) = f(ol(j)) (4)

A prior often used for inferences about a population of unknown size is the scale-invariant Jeffreys
prior P (n) = 1

n
[15]. We follow this standard approach here but truncate at n = 1000. Choosing

some upper bound is convenient when implementing the model, and has the advantage of producing
a prior that is proper (note that the Jeffreys prior is improper). Equation 2 indicates that the number
of white balls nw is sampled from a discrete uniform distribution. Equation 3 indicates that each
token is generated by sampling one of the n balls in the world uniformly at random, and Equation 4
indicates that the color of each token is observed without noise.

The generative assumptions just described can be used to define a probabilistic approach to ob-
ject discovery and identification. Suppose that the observations available to a learner consist of a
fully-observed feature vector g and a partially-observed label vector lobs. Object discovery and iden-
tification can be addressed by using the posterior distribution P (l|g, lobs) to make inferences about
the number of distinct objects observed and about the identity of each token. Computing the poste-
rior distribution P (n|g, lobs) allows the learner to make inferences about the total number of objects
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in the world. In some cases, the learner may solve the problem of unobserved-object discovery by
realizing that the world contains more objects than she has observed thus far.

The next sections explore the idea that the inferences made by humans correspond approximately
to the inferences of this ideal learner. Since the ideal learner allows for the possible existence of
objects that have not yet been observed, we refer to our model as the open world model. Although
we make no claim about the psychological mechanisms that might allow humans to approximate
the predictions of the ideal learner, in practice we need some method for computing the predictions
of our model. Since the domains we consider are relatively small, all results in this paper were
computed by enumerating and summing over the complete set of possible worlds.

2 Experiment 1: Prior knowledge and identification

The introduction described a scenario (the statue and sandwiches example) where prior knowledge
appears to guide identification. Our first experiment explores a very simple instance of this idea. We
consider a setting where participants observe balls that are sampled with replacement from an urn.
In one condition, participants sample the same ball from the urn on four consecutive occasions and
are asked to predict whether the token observed on the fifth draw is the same ball that they saw on
the first draw. In a second condition participants are asked exactly the same question about the fifth
token but sample four different balls on the first four draws. We expect that these different patterns
of data will shape the prior beliefs that participants bring to the identification problem involving the
fifth token, and that participants in the first condition will be substantially more likely to identify the
fifth token as a ball that they have seen before.

Although we consider an abstract setting involving balls and urns the problem we explore has some
real-world counterparts. Suppose, for example, that a colleague wears the same tie to four formal
dinners. Based on this evidence you might be able to estimate the total number of ties that he owns,
and might guess that he is less likely to wear a new tie to the next dinner than a colleague who wore
different ties to the first four dinners.

Method. 12 adults participated for course credit. Participants interacted with a computer interface
that displayed an urn, a robotic arm and a beam of UV light. The arm randomly sampled balls from
the urn, and participants were told that each ball had a unique serial number that was visible only
under UV light. After some balls were sampled, the robotic arm moved them under the UV light and
revealed their serial numbers before returning them to the urn. Other balls were returned directly to
the urn without having their serial numbers revealed. The serial numbers were alphanumeric strings
such as “QXR182”—note that these serial numbers provide no information about the total number
of objects, and that our setting is therefore different from the Jeffreys tramcar problem [15].

The experiment included five within-participant conditions shown in Figure 1. The observations for
each condition can be summarized by a string that indicates the number of tokens and the serial
numbers of some but perhaps not all tokens. The 11 1 1 1 condition in Figure 1a is a case
where the same ball (without loss of generality, we call it ball 1) is drawn from the urn on five
consecutive occasions. The 51 2 3 4 condition in Figure 1b is a case where five different balls
are drawn from the urn. The  1    condition in Figure 1d is a case where five draws are
made, but only the serial number of the first ball is revealed. Within any of the five conditions,
all of the balls had the same color (white or gray), but different colors were used across different
conditions. For simplicity, all draws in Figure 1 are shown as white balls.

On the second and all subsequent draws, participants were asked two questions about any token that
was subsequently identified. They first indicated whether the token was likely to be the same as the
ball they observed on the first draw (the ball labeled 1 in Figure 1). They then indicated whether
the token was likely to be a ball that they had never seen before. Both responses were provided on a
scale from 1 (very unlikely) to 7 (very likely). At the end of each condition, participants were asked
to estimate the total number of balls in the urn. Twelve options were provided ranging from “exactly
1” to “exactly 12,” and a thirteenth option was labeled “more than 12.” Responses to each option
were again provided on a seven point scale.

Model predictions and results. The comparisons of primary interest involve the identification
questions in conditions 1a and 1b. In condition 1a the open world model infers that the total number
of balls is probably low, and becomes increasingly confident that each new token is the same as the
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Figure 1: Model predictions and results for the five conditions in experiment 1. The left columns
in (a) and (b) show inferences about the identification questions. In each plot, the first group of
bars shows predictions about the probability that each new token is the same ball as the first ball
drawn from the urn. The second group of bars shows the probability that each new token is a ball
that has never been seen before. The right columns in (a) and (b) and the plots in (c) through (e)
show inferences about the total number of balls in each urn. All human responses are shown on
the 1-7 scale used for the experiment. Model predictions are shown as probabilities (identification
questions) or ranks (population size questions).

first object observed. In condition 1b the model infers that the number of balls is probably high, and
becomes increasingly confident that each new token is probably a new ball.

The rightmost charts in Figures 1a and 1b show inferences about the total number of balls and
confirm that humans expect the number of balls to be low in condition 1a and high in condition 1b.
Note that participants in condition 1b have solved the problem of unobserved-object discovery and
inferred the existence of objects that they have never seen. The leftmost charts in 1a and 1b show
responses to the identification questions, and the final bar in each group of four shows predictions
about the fifth token sampled. As predicted by the model, participants in 1a become increasingly
confident that each new token is the same object as the first token, but participants in 1b become
increasingly confident that each new token is a new object. The increase in responses to the new ball
questions in Figure 1b is replicated in conditions 2d and 2e of Experiment 2, and therefore appears
to be reliable.
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The third and fourth rows of Figures 1a and 1b show the predictions of two alternative models that
are intuitively appealing but that fail to account for our results. The first is the Dirichlet Process (DP)
mixture model, which was proposed by Anderson [16] as an account of human categorization. Un-
like most psychological models of categorization, the DP mixture model reserves some probability
mass for outcomes that have not yet been observed. The model incorporates a prior distribution over
partitions—in most applications of the model these partitions organize objects into categories, but
Anderson suggests that the model can also be used to organize object tokens into classes that corre-
spond to individual objects. The DP mixture model successfully predicts that the ball 1 questions
will receive higher ratings in 1a than 1b, but predicts that responses to the new ball question will
be identical across these two conditions. According to this model, the probability that a new token
corresponds to a new object is θ

m+θ
where θ is a hyperparameter and m is the number of tokens

observed thus far. Note that this probability is the same regardless of the identities of the m tokens
previously observed.

The Pitman Yor (PY) mixture model in the fourth row is a generalization of the DP mixture model
that uses a prior over partitions defined by two hyperparameters [17]. According to this model, the
probability that a new token corresponds to a new object is θ+kα

m+θ
, where θ and α are hyperparameters

and k is the number of distinct objects observed so far. The flexibility offered by a second hyper-
parameter allows the model to predict a difference in responses to the new ball questions across the
two conditions, but the model does not account for the increasing pattern observed in condition 1b.
Most settings of θ and α predict that the responses to the new ball questions will decrease in condi-
tion 1b. A non-generic setting of these hyperparameters with θ = 0 can generate the flat predictions
in Figure 1, but no setting of the hyperparameters predicts the increase in the human responses.
Although the PY and DP models both make predictions about the identification questions, neither
model can predict the total number of balls in the urn. Both models assume that the population of
balls is countably infinite, which does not seem appropriate for the tasks we consider.

Figures 1c through 1d show results for three control conditions. Like condition 1a, 1c and 1d are
cases where exactly one serial number is observed. Like conditions 1a and 1b, 1d and 1e are cases
where exactly five tokens are observed. None of these control conditions produces results similar to
conditions 1a and 1b, suggesting that methods which simply count the number of tokens or serial
numbers will not account for our results.

In each of the final three conditions our model predicts that the posterior distribution on the number
of balls n should decay as n increases. This prediction is not consistent with our data, since most
participants assigned equal ratings to all 13 options, including “exactly 12 balls” and “more than
12 balls.” The flat responses in Figures 1c through 1e appear to indicate a generic desire to express
uncertainty, and suggest that our ideal learner model accounts for human responses only after several
informative observations have been made.

3 Experiment 2: Object discovery and identity uncertainty

Our second experiment focuses on object discovery rather than identification. We consider cases
where learners make inferences about the number of objects they have seen and the total number
of objects in the urn even though there is substantial uncertainty about the identities of many of the
tokens observed. Our probabilistic model predicts that observations of unidentified tokens can influ-
ence inferences about the total number of objects, and our second experiment tests this prediction.

Method. 12 adults participated for course credit. The same participants took part in Experiments
1 and 2, and Experiment 2 was always completed after Experiment 1. Participants interacted with
the same computer interface in both conditions, and the seven conditions in Experiment 2 are shown
in Figure 2. Note that each condition now includes one or more gray tokens. In 2a, for example,
there are four gray tokens and none of these tokens is identified. All tokens were sampled with
replacement, and the condition labels in Figure 2 summarize the complete set of tokens presented in
each condition. Within each condition the tokens were presented in a pseudo-random order—in 2a,
for example, the gray and white tokens were interspersed with each other.

Model predictions and results. The cases of most interest are the inferences about the total number
of balls in conditions 2a and 2c. In both conditions participants observe exactly four white tokens
and all four tokens are revealed to be the same ball. The gray tokens in each condition are never
identified, but the number of these tokens varies across the conditions. Even though the identities
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Figure 2: Model predictions and results for the seven conditions in Experiment 2. The left columns
in (a) through (e) show inferences about the identification questions, and the remaining plots show
inferences about the total number of balls in each urn.

of the gray tokens are never revealed, the open world model can use these observations to guide its
inference about the total number of balls. In 2a, the proportions of white tokens and gray tokens
are equal and there appears to be only one white ball, suggesting that the total number of balls is
around two. In 2c grey tokens are now three times more common, suggesting that the total number
of balls is larger than two. As predicted, the human responses in Figure 2 show that the peak of the
distribution in 2a shifts to the right in 2c. Note, however, that the model does not accurately predict
the precise location of the peak in 2c.

Some of the remaining conditions in Figure 2 serve as controls for the comparison between 2a and
2c. Conditions 2a and 2c differ in the total number of tokens observed, but condition 2b shows that
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this difference is not the critical factor. The number of tokens observed is the same across 2b and 2c,
yet the inference in 2b is more similar to the inference in 2a than in 2c. Conditions 2a and 2c also
differ in the proportion of white tokens observed, but conditions 2f and 2g show that this difference
is not sufficient to explain our results. The proportion of white tokens observed is the same across
conditions 2a, 2f, and 2g, yet only 2a provides strong evidence that the total number of balls is
low. The human inferences for 2f and 2g show the hint of an alternating pattern consistent with the
inference that the total number of balls in the urn is even. Only 2 out of 12 participants generated
this pattern, however, and the majority of responses are near uniform. Finally, conditions 2d and
2e replicate our finding from Experiment 1 that the identity labels play an important role. The only
difference between 2a and 2e is that the four labels are distinct in the latter case, and this single
difference produces a predictable divergence in human inferences about the total number of balls.

4 Experiment 3: Categorization and identity uncertainty

Experiment 2 suggested that people make robust inferences about the existence and number of unob-
served objects in the presence of identity uncertainty. Our final experiment explores categorization
in the presence of identity uncertainty. We consider an extreme case where participants make infer-
ences about the variability of a category even though the tokens of that category have never been
identified.

Method. The experiment included two between subject conditions, and 20 adults were recruited for
each condition. Participants were asked to reason about a category including eggs of a given species,
where eggs in the same category might vary in size. The interface used in Experiments 1 and 2 was
adapted so that the urn now contained two kinds of objects: notepads and eggs. Participants were
told that each notepad had a unique color and a unique label written on the front. The UV light
played no role in the experiment and was removed from the interface: notepads could be identified
by visual inspection, and identifying labels for the eggs were never shown.

In both conditions participants observed a sequence of 16 tokens sampled from the urn. Half of the
tokens were notepads and the others were eggs, and all egg tokens were identical in size. Whenever
an egg was sampled, participants were told that this egg was a Kwiba egg. At the end of the con-
dition, participants were shown a set of 11 eggs that varied in size and asked to rate the probability
that each one was a Kwiba egg. Participants then made inferences about the total number of eggs
and the total number of notepads in the urn.

The two conditions were intended to lead to different inferences about the total number of eggs in
the urn. In the 4 egg condition, all items (notepad and eggs) were sampled with replacement. The
8 notepad tokens included two tokens of each of 4 notepads, suggesting that the total number of
notepads was 4. Since the proportion of egg tokens and notepad tokens was equal, we expected
participants to infer that the total number of eggs was roughly four. In the 1 egg condition, four
notepads were observed in total, but the first three were sampled without replacement and never
returned to the urn. The final notepad and the egg tokens were always sampled with replacement.
After the first three notepads had been removed from the urn, the remaining notepad was sampled
about half of the time. We therefore expected participants to infer that the urn probably contained
a single notepad and a single egg by the end of the experiment, and that all of the eggs they had
observed were tokens of a single object.

Model. We can simultaneously address identification and categorization by combining the open
world model with a Gaussian model of categorization. Suppose that the members of a given category
(e.g. Kwiba eggs) vary along a single continuous dimension (e.g. size). We assume that the egg
sizes are distributed according to a Gaussian with known mean and unknown variance σ2. For
convenience, we assume that the mean is zero (i.e. we measure size with respect to the average) and

use the standard inverse-gamma prior on the variance: p(σ2) ∝ (σ2)−(α+1)e−
β

σ2 . Since we are
interested only in qualitative predictions of the model, the precise values of the hyperparameters are
not very important. To generate the results shown in Figure 3 we set α = 0.5 and β = 2.

Before observing any eggs, the marginal distribution on sizes is p(x) =
∫

p(x|σ2)p(σ2)dσ2. Sup-
pose now that we observe m random samples from the category and that each one has size zero.
If m is large then these observations provide strong evidence that the variance σ2 is small, and the
posterior distribution p(x|m) will be tightly peaked around zero. If m, is small, however, then the
posterior distribution will be broader.
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Figure 3: (a) Model predictions for Experiment 3. The first two panels show the size distributions
inferred for the two conditions, and the final panel shows the difference of these distributions. The
difference curve for the model rises to a peak of around 1.6 but has been truncated at 0.1. (b)
Human inferences about the total number of eggs in the urn. As predicted, participants in the 4
egg condition believe that the urn contains more eggs. (c) The difference of the size distributions
generated by participants in each condition. The central peak is absent but otherwise the curve is
qualitatively similar to the model prediction.

The categorization model described so far is entirely standard, but note that our experiment considers
a case where T , the observed stream of object tokens, is not sufficient to determine m, the number of
distinct objects observed. We therefore use the open world model to generate a posterior distribution
over m, and compute a marginal distribution over size by integrating out both m and σ2: p(x|T ) =
∫

p(x|σ2)p(σ2|m)p(m|T )dσ2dm. Figure 3a shows predictions of this “open world + Gaussian”
model for the two conditions in our experiment. Note that the difference between the curves for the
two conditions has the characteristic Mexican-hat shape produced by a difference of Gaussians.

Results. Inferences about the total number of eggs suggested that our manipulation succeeded.
Figure 3b indicates that participants in the 4 egg condition believed that they had seen more eggs
than participants in the 1 egg condition. Participants in both conditions generated a size distribution
for the category of Kwiba eggs, and the difference of these distributions is shown in Figure 3c.
Although the magnitude of the differences is small, the shape of the difference curve is consistent
with the model predictions. The x = 0 bar is the only case that diverges from the expected Mexican
hat shape, and this result is probably due to a ceiling effect—80% of participants in both conditions
chose the maximum possible rating for the egg with mean size (size zero), leaving little opportunity
for a difference between conditions to emerge. To support the qualitative result in Figure 3c we
computed the variance of the curve generated by each individual participant and tested the hypothesis
that the variances were greater in the 1 egg condition than in the 4 egg condition. A Mann-Whitney
test indicated that this difference was marginally significant (p < 0.1, one-sided).

5 Conclusion

Parsing the world into stable and recurring objects is arguably our most basic cognitive achieve-
ment [2, 10]. This paper described a simple model of object discovery and identification and eval-
uated it in three behavioral experiments. Our first experiment confirmed that people rely on prior
knowledge when solving identification problems. Our second and third experiments explored prob-
lems where the identities of many object tokens were never revealed. Despite the resulting uncer-
tainty, we found that participants in these experiments were able to track the number of objects they
had seen, to infer the existence of unobserved objects, and to learn and reason about categories.

Although the tasks in our experiments were all relatively simple, future work can apply our ap-
proach to more realistic settings. For example, a straightforward extension of our model can handle
problems where objects vary along multiple perceptual dimensions and where observations are cor-
rupted by perceptual noise. Discovery and identification problems may take several different forms,
but probabilistic inference can help to explain how all of these problems are solved.

Acknowledgments We thank Bobby Han, Faye Han and Maureen Satyshur for running the experiments.
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