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Abstract
We introduce a new approach for exploring how humans learn
and represent functional relationships based on limited obser-
vations. We focus on a problem called superspace extrapo-
lation, where learners observe training examples drawn from
an n-dimensional space and must extrapolate to an n+ 1-
dimensional superspace of the training examples. Many exist-
ing psychological models predict that superspace extrapolation
should be fundamentally underdetermined, but we show that
humans are able to extrapolate both linear and non-linear func-
tions under these conditions. We also show that a Bayesian
model can account for our results given a hypothesis space that
includes families of simple functional relationships.

Introduction
People regularly face situations where they must reason about
functions defined over continuous variables. For example,
consider a truck driver who wants to predict how quickly his
truck can accelerate based on the mass of his cargo. If the
driver has transported similar masses in the past, he can gen-
erate an accurate prediction by recalling the accelerations ob-
served on these previous occasions. The real test of whether
and how he has learned the function is how he extrapolates
from past examples and makes predictions about loads that
are much lighter or heavier than those he has seen in the past.
Figure 1a, for example, shows how a learner might use linear
extrapolation to generalize on the basis of two examples.

In any function learning setting, extrapolation judgments
are shaped by the examples observed and the assumptions or
inductive bias that the human brings to the problem. Min-
imizing the information carried by the training examples
makes the role of the inductive bias especially apparent. Here
we explore how humans learn functions from impoverished
training data, and focus in particular on the problem of su-
perspace extrapolation. Given training examples that fall
within an n-dimensional space, we study how learners ex-
trapolate to an n+1-dimensional superspace that encloses
the training examples. If the underlying function is one-
dimensional, superspace extrapolation requires the learner to
generalize on the basis of a single training example (Fig-
ure 1b). We focus on the corresponding problem in two
dimensions, where the learner observes training examples
drawn from a one-dimensional space and must generalize to
the full two-dimensional space (Figures 1c-f).

Superspace extrapolation is an interesting problem in its
own right, but also provides a way to distinguish between
competing accounts of function learning. The psychologi-
cal literature on function learning includes two prominent ap-
proaches that we will call the rule-based approach and the

similarity-based approach. The rule-based approach proposes
that humans rely on a set of parametric functions that have
explicit mental representations, including linear functions,
polynomial functions, and others (Carroll, 1963; Brehmer,
1974; Koh & Meyer, 1991; Koh, 1993; Bott & Heit, 2004).
The similarity-based approach proposes that humans remem-
ber specific examples encountered during training, and make
predictions about test points based on similarity to the train-
ing points (Busemeyer, Myung, & McDaniel, 1993; Kelley
& Busemeyer, 2008). Similarity-based approaches have tra-
ditionally struggled to account for extrapolation, and super-
space extrapolation is especially challenging for these ap-
proaches. We show that humans are able to learn several
different functions in a superspace extrapolation paradigm,
which supports the idea that people can formulate and use ex-
plicit representations of both linear and nonlinear functions.

The hybrid approach to function learning proposes that
humans can make both rule-based and similarity-based in-
ferences. We show that this approach can account for our
data by evaluating a hybrid model that builds on the Gaus-
sian process account of Griffiths, Lucas, Williams, and Kalish
(2009). Other models of function learning are prominent in
the literature, and here we mention two representative ex-
amples. The Population of Linear Experts (POLE) model
(Kalish, Lewandowsky, & Kruschke, 2004) proposes that hu-
mans learn functions that are piecewise linear (in the 1D case)
or piecewise planar (in the 2D case). Since the training ex-
amples in a superspace extrapolation task are collinear, any
given piecewise planar function belongs to an infinite family
of piecewise planar functions that make very different extrap-
olation predictions but fit the training examples equally well.
For example, Figures 1c and 1d show two different extrapola-
tion functions that account perfectly for the same set of train-
ing examples. As a result, models that rely exclusively on lin-
ear extrapolation suggest that superspace extrapolation prob-
lems are fundamentally underdetermined and are unlikely to
lead to consistent patterns of human responses. The Sigma
model (Juslin, Karlsson, & Olsson, 2008) is an alternative
approach which proposes that humans can acquire explicit
representations of linear functions, but that knowledge about
non-linear functions is “carried implicitly by memory for ex-
emplars.” We show that people are successfully able to ex-
trapolate non-linear functions in a superspace extrapolation
paradigm, which suggests that the rule-based component of
a hybrid approach should include room for non-linear func-
tions.



Figure 1: Examples of superspace extrapolation in one and
two dimensions. Black dots are training points. (a) Standard
function learning with one cue dimension; (b) Extrapolating
from cues in a zero-dimensional subspace; (c) Superspace
extrapolation in two dimensions, where f(x, y) = |x − y|;
(d) A second example of superspace extrapolation applied to
|x − y|, assuming a difference piecewise linear function; (e)
Superspace extrapolation where f(x, y) = xy; (f) A second
example using xy, with similarity-based extrapolation.

Experiment

We developed a behavioral experiment with two goals in
mind. The first and most basic goal is to find out whether
superspace extrapolation is possible at all. Expecting partici-
pants to make generalizations about a function given a single
training point seems unreasonable (Figure 1b), and it is possi-
ble that participants will find the two dimensional version of
superspace extrapolation equally underdetermined. If super-
space extrapolation turns out to be possible, our second goal
is to understand how this kind of extrapolation is achieved. In
particular, we aimed for a task that could address whether par-
ticipants use explicit rules to make inferences that go beyond
linear and similarity-based extrapolation.

We hypothesized that participants could learn a range of
two-dimensional functions and chose to focus on five specific
functions that are relatively simple and qualitatively differ-
ent from one another. These functions are shown in Table 1
and plotted in Figure 2. Note that the family of functions
includes both linear and non-linear functions. Consider one
such function, the absolute difference function plotted in Fig-
ure 1c. Suppose that a learner observes the training points
shown in black, which happen to fall along a line. There are
many possible ways to extrapolate from the training points to
the entire space—for example, Figure 1d shows an extrapola-
tion to an axis-aligned function that is especially simple in the
sense that it is invariant with respect to one of the dimensions.
If people extrapolate by fitting a piecewise linear (i.e. planar)
function to the training points, then there seems to be no rea-
son to prefer the extrapolation in Figure 1c to Figure 1d or the
infinitely many alternative extrapolations that fit two planes to
the training points. On the other hand, if |x− y| is in human

learners’ representational toolkit, we might predict that their
extrapolations would resemble Figure 1c.

If extrapolation in cases like Figure 1c does depend on ex-
plicit rules, then extrapolations might vary dramatically if the
positions of the training points are rotated. For example, the
function f(x, y) = |x− y| turns into the function |x− 1+ y|
when rotated by π/2 around the line (0.5, 0.5, t) which passes
through (0.5, 0.5) in the xy-plane and is perpendicular to the
z-axis. It seems plausible that participants rely on a hypoth-
esis space of rules that can accommodate the original but not
the rotated function. We therefore compare each extrapola-
tion problem to a rotated variant where the training points are
rotated around the line (0.5, 0.5, t), and predict that partici-
pants will be able to learn the unrotated but not the rotated
version of each function. Linear extrapolation is equally pos-
sible in the rotated and unrotated cases, and a linear extrapo-
lation account therefore predicts no qualitative difference be-
tween these two versions of the problem. Many similarity-
based approaches also predict that the rotated and unrotated
versions should lead to similar results, since similarity met-
rics (e.g. Euclidean distance) are often rotation-invariant.

Methods
Participants. 33 participants were recruited from Carnegie
Mellon’s participant pool and the local community and re-
ceived course credit or ten dollars for participating.
Materials. Cues were presented using adjacent horizontal
bars and participants made predictions by adjusting a third
horizontal bar centered under the midpoint between the cue
bars. Each bar had a bounding box, so the range of valid
values—which we denote with [0, 1] for simplicity—was ev-
ident to participants. No numerical information was provided
about any of the variables. Feedback presentations took the
form of a green bar overlaid on the prediction bar.
Procedure. Participants were told that they would have
to learn several cause-effect relationships through trial-and-
error. Each participant was presented with the five distinct
functions listed in Table 1 in random order, in either ro-
tated or unrotated form. For a given unrotated function
f(x, y) and a rotation angle θr, we define a rotated func-
tion g(x, y) = f(x′, y′) where (x′, y′) is the result of rotat-
ing (x, y) around the point (0.5, 0.5) by θr. Table 1 contains
explicit definitions of the unrotated and rotated versions of
all functions. For each function, participants saw a training
phase followed by a test phase. Both phases consisted of a
series of trials in which participants were presented with cues
(x, y) and asked to predict f(x, y).

The training phase included 40 randomly-ordered exam-
ples that fell along a single line. Specifically, training exam-
ples fell at equal intervals along a line segment with length
0.9 centered at (0.5, 0.5), making an angle of θl (see Table 1)
with the x-axis. After each training prediction, participants
who gave guesses within 0.04 of the true value moved to the
next example point, while inaccurate guesses were followed
by feedback in which the correct value of f(x, y) was pre-
sented and participants had to adjust their prediction to match



Name Unrot. f(.) θr Rot. f(.) θl

Projection x 1
2π 1− y 1

8π

Average 1
2 (x+ y) − 1

2π
1
2 (x+ 1− y) 3

8π

Product xy 1
2π x(1− y) 5

8π

Difference |x− y| 1
2π |x+ y − 1| 5

8π

Max max(x, y) − 1
2π max(x, 1− y) 7

8π

Table 1: List of functions that participants learned. θr refers
to the relative angles of the original and rotated functions, and
θl denotes the angle of the original line.

that value in order to continue.
In the subsequent test phase, participants received no feed-

back and were presented with 10 equidistant points along the
original training line, 10 within-space points that fell beyond
the extrema of the original line, and 36 superspace extrapo-
lation points in a uniform 6-by-6 grid over the [0, 1] × [0, 1]
range. After each test phase, participants were prompted to
describe what they thought the function was before moving
on to the next function. The bars corresponding to variables
x and y were selected randomly.

Experimental Results
We excluded one participant who did not attempt to learn the
functions, indicated by a mean absolute error exceeding 0.25.
Ten of the 32 participants who remained did not complete all
of the functions in the allotted hour, but each version (rotated
or unrotated) of each function was completed by at least 11
participants. The side on which x and y were presented had
no significant influence on performance, so the two orienta-
tions were grouped together.

The five panels labeled (iii) in Figure 2 show average hu-
man responses for the five unrotated functions. The black
dots show responses for the training points, and the surfaces
show responses for the extrapolation points. In all cases, par-
ticipants were able to learn the function values for the train-
ing points, and their extrapolation judgments were qualita-
tively similar in all cases to the true functions. Note that su-
perspace extrapolation was possible even for the three non-
linear functions in the set. The panels labeled (iv) in Figure 2
show average responses for the rotated functions. Partici-
pants appeared to learn the rotated projection function, but
extrapolation judgments for the four other rotated functions
appear qualitatively different from the true functions. Table 1
shows that the rotated version of the projection function is
f(x, y) = 1 − y. Recall that the cues were presented using
sliders on horizontal bars, and that the value of each cue cor-
responds visually to the proportion of the bar to the left of the
slider. The rotated projection function can be learned by pay-
ing attention to the complement of the y cue, or the propor-
tion of the y-bar to the right of the slider. Although responses
for the rotated projection function suggested that participants

Function MAEu MAEr p
x 0.039 0.055 0.51

(x+ y)/2 0.071 0.151 0.00088
xy 0.092 0.140 0.042
|x− y| 0.123 0.247 0.0015

max(x, y) 0.046 0.130 0.0077

Table 2: Mean absolute error for test points in learning ro-
tated MAEr and unrotated functions (MAEu). p-values were
obtained using a two-tailed permutation test, using 200,000
samples per test.

are sensitive to complements in some cases, responses for the
remaining rotated functions suggest that participants find it
difficult to learn simple functions defined in terms of comple-
ments.

The descriptions provided by individual participants indi-
cated that many had acquired explicit representations of the
unrotated functions. Five examples of these descriptions are:
“effect was identical to cause B” (projection); “roughly the
average of the two causes” (average); “fraction multiplica-
tion” (product); “difference of the causes” (difference); “the
larger of the two values” (max). Responses for the rotated
functions sometimes indicated complex hypotheses, but more
often indicated confusion or uncertainty about the nature of
the function. These descriptions indicate that some individ-
uals had clearly learned the functions. To further explore
responses at the individual level, we looked at the extent to
which individual participants’ judgments fit the true functions
versus several alternatives, for both unrotated and rotated
functions, shown in Figure 3. The space of candidate func-
tions included all true unrotated and rotated functions, along
with a set of simple alternatives shown in the caption to Fig-
ure 3. The alternatives include a function that captures com-
plete uncertainty (f(x, y) = 0.5), floor and ceiling responses
(f(x, y) = 1 and f(x, y) = 0), and some simple linear com-
binations of x and y. For all of the unrotated functions, most
participants’ extrapolation judgments were best fit by the true
function. For the rotated versions, the modal judgment only
matched the true function for rotations of f(x, y) = x and
f(x, y) = max(x, y).

Additional evidence that individual participants often
learned the true functions relatively well is provided by ex-
amining the mean absolute error with respect to the true
function. Performance for the projection function was near-
ceiling for both unrotated and rotated versions, but in all
other cases participants had lower mean absolute error for
the unrotated functions than the rotated functions. Table 2
shows mean absolute error for the extrapolation points, and
a similar pattern held for the training points, with signifi-
cantly better performance in the unrotated cases for f(x, y) ∈
{x, |x− y|, xy,max(x, y)} at α = 0.05.

Previous experiments have explored the relative learnabil-
ity of one-dimensional functions, and our results provide
some initial evidence about a learnability ordering for two
dimensional functions. The results in Table 2 suggest that the



Figure 2: True functions, average judgments, and model
predictions for five different functions. Subfigures (a-e) re-
fer to the five distinct functions we selected, each labeled
accordingly. The black dots represent the training examples
and the surfaces represent extrapolation points. Each sub-
figure is divided as follows: (i) Training and ground truth
for the unrotated functions; (ii) Training and extrapolation
for the rotated functions; (iii) Average judgments for the
unrotated functions; (iv) Average judgments for the rotated
functions; (v-vi) Model predictions and correlations with
human extrapolation judgments, for unrotated and rotated
functions, respectively. Note that axes differ in the rotated
cases, allowing straightforward comparison with the unro-
tated cases.
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Figure 3: Trained functions versus functions that best fit participants’ judgments. The other group includes f(x, y) ∈
{1, 0.5, 0, 0.5x, 0.5y, 0.75x+ 0.25y, 0.25x+ 0.75y}. Best-fitting functions were those that minimized mean squared error.

projection and maximum functions are easiest to learn, and
that the product and difference functions are most difficult to
learn.

Taken together, our data provide strong evidence that hu-
mans are capable of superspace extrapolation, and can learn
both linear and non-linear functions under this paradigm. The
lower performance for the rotated functions suggests that the
space of learnable functions is restricted. Both results are
compatible with the idea that people can acquire explicit rep-
resentations of rules, but raise challenges for approaches that
focus on similarity-based computations alone. Our data, how-
ever, are compatible with a hybrid approach, and the next sec-
tion describes one such approach that accounts for our data
relatively well.

Modeling superspace extrapolation
The hybrid approach to function learning is motivated by the
idea that humans readily learn certain rules but fall back on
similarity-based computations when no simple rule is consis-
tent with the observed examples. The rule-based component
of this approach can potentially explain how humans carry out
superspace extrapolation when learning the unrotated func-
tions in our experiment, and the similarity-based component
may help to explain responses for the rotated functions.

To demonstrate that the hybrid approach can account for
our data, we developed a computational model which as-
sumes that humans make use of a hypothesis space that con-
tains several families of functions. Some of these function
families correspond to simple rules, and others are more
generic and include all smooth functions. The first column of
Table 3 shows one such hypothesis space that includes linear,
quadratic, difference, maximum and product functions, along
with one generic family of smooth functions. Given this hy-
pothesis space and a set of training examples, extrapolation
judgments can be made by using the posterior distribution
over the space of functions.

The model we implemented builds on the hybrid approach
of Griffiths et al. (2009), which uses Gaussian processes to

Function family Prior Mean function
β[1 x y]T 0.5 µ0 = 0, µ1 = µ2 = 1
β[1 x y]T 0.4 µ0 = 1, µ1 = µ2 = −1

β[1 x y x2 y2]T 0.09 µ0 = µ1 = µ2 = µ3 = 0
β1|x− y| 0.001 µ1 = 1
β1max(x, y) 0.001 µ1 = 1

β1xy 0.001 µ1 = 1
Smooth functions 0.01 f(x, y) = 0

Table 3: Hypothesis space captured by the Gaussian pro-
cess model. Un-normalized prior probabilities are given for
each function family for readability. For the first five fami-
lies, coefficients βi are distributed normally around µi with a
common variance for each coefficient. The difference, max-
imum, and product families are not described by Griffiths et
al. (2009), but the prior probabilities on all remaining families
and the µi values for these families are drawn from Griffiths
et al. (2009).

capture both rule-based and similarity-based function learn-
ing. As originally presented, this model takes kernel func-
tions that express linear and quadratic rules as well as a
standard similarity-based kernel function for which the co-
variance between any two points x and x′ is K(x,x′) =
θ1 exp(− 1

θ22
||x − x′||2), where θ1 and θ2 determine the

smoothness of the function. Intuitively, this last kernel ex-
presses the assumption that functions are locally smooth, and
was used to produce the extrapolations in Figure 1f. The
model generates predictions by integrating over all possible
functions for all function types, integrating out all applicable
parameters. For a more detailed description, see Griffiths et
al. (2009).

Our extension to the original model was to add a kernel
capturing each of the three non-linear rules in our experiment,
which are equivalent to Bayesian regression models of the
form β|x− y|, βmax(x, y), and βxy, where β is a coefficient
distributed normally around one. We assigned each new ker-
nel a prior probability of 0.001, or one tenth that of the least-



probable kernel in the original model, before renormalizing
kernel probabilities. See Table 3 for a summary of all of the
kernels in the model and their corresponding probabilities.

Model predictions are shown in Figures 2e and f, along
with correlations with human extrapolation judgments. In
most cases the predictions of this model closely matched par-
ticipants’ superspace extrapolations for both unrotated and
rotated functions. The latter result is the more striking of the
two, as the predictions arise from averaging over several ker-
nels rather than choosing suitable ones in advance.

The one major discrepancy between model predictions and
human judgments occurs for the rotated version of |x − y|,
where the extrapolation judgments predicted by the model are
substantially more extreme than the human responses. This
result is driven by the fact that the family of difference func-
tions in Table 3 can perfectly account for the rotated training
points if β1 takes a value larger than 1. Unlike the model, hu-
mans may be unable to learn weighted versions of the differ-
ence function in Table 3, which could be captured by setting
the coefficient β1 for this family to 1. The model represents
the simplest possible extension of the Gaussian process ac-
count of Griffiths et al. (2009), but adjusting the priors on the
coefficients may result in a more accurate model of human
learning.

Alternative models
Several recent models that address extrapolation in function
learning and multiple cue judgment, including POLE (Kalish
et al., 2004), EXAM (DeLosh, Busemeyer, & McDaniel,
1997), and Sigma (Juslin et al., 2008), all suggest that humans
extrapolate according to linear functions. In their present
forms, none of these models appear to account for our re-
sults. We fit the POLE model to our data and found that ex-
trapolations were consistently piecewise linear in one cue di-
mension, and invariant to the other, taking a form like that in
Figure 1c. This approach to superspace extrapolation seems
plausible a priori but it does not reflect the behavior of our
participants. The EXAM model makes extrapolation predic-
tions using the nearest past examples to a new point, imply-
ing that peoples’ judgments are invariant to the rotation of a
given function, which is inconsistent with our data. Finally,
the Sigma model (Juslin et al., 2008) proposes that humans
can acquire explicit representations of linear functions but
that extrapolation of non-linear functions relies on similarity-
based generalization. The Sigma model is therefore incon-
sistent with our finding that people were able to learn several
non-linear functions.

Conclusion
We introduced the problem of superspace extrapolation,
which provides a new way to explore the inductive biases that
people bring to the task of function learning. Our data sug-
gest that these inductive biases include a toolkit of linear and
non-linear rules that can be compared against the available
data. Our results challenge several popular accounts of func-
tion learning, but we showed that they are compatible with a

hybrid approach to function learning that accommodates both
explicit rules and similarity-based inferences.

Superspace extrapolation requires learners to go beyond
the available data in a fundamental way, and other prob-
lems where humans make inferences based on limited data
have also provided important evidence about human induc-
tive biases (Shepard, 1994; Feldman, 1997). Psychologists
sometimes study what can be learned from textual corpora
and other massive data sets, but exploring what humans learn
from highly constrained data sets can be equally valuable.
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