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Abstract
Every time we encounter a new object, action, or event, there is some chance
that we will need to assign it to a novel category. We describe and evaluate a
class of probabilistic models that detect when an object belongs to a category
that has not previously been encountered. The models incorporate a prior
distribution that is influenced by the distribution of previous objects among
categories, and we present two experiments that demonstrate that people
are also sensitive to this distributional information. Two additional exper-
iments confirm that distributional information is combined with similarity
when both sources of information are available. We compare our approach
to previous models of unsupervised categorization and to several heuristic-
based models, and find that a hierarchical Bayesian approach provides the
best account of our data.
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Introduction

For each of us, the set of categories that we have encountered is continually expanding.
We often recognize at a glance when an animal, a plant, a vehicle, a tool, or a consumer
product is a member of a category that we have never previously seen. We also encounter
new kinds of actions (e.g. tweeting), new kinds of events (e.g. Pi day), and new artistic genres
(e.g. K-pop). Dictionary makers respond to this steady stream of novelty by issuing regular
updates, and all of us must make analogous updates to our own mental representations of
categories.

Categorization has been extensively studied within the psychological litera-
ture (Nosofsky, 1986; Murphy, 2002), but most theoretical approaches do not highlight
the challenge of dealing with novel categories. Computational accounts of category learning
often formulate the learner’s task as assigning objects to one of several categories known
to the learner. For models in this tradition there is “nothing new under the sun” and the
learning problem is to infer the extensions of a pre-specified set of categories. A handful of
models, however, acknowledge that there are “more things in heaven and earth” than the
learner has encountered so far. These models provide an explicit mechanism by which a
learner might guess that a new observation belongs to a new category even though a cate-
gory label for the new observation is not provided. One such model is Anderson’s rational
model of categorization (RMC, 1991), a Bayesian model that expects with some probability
that the next object encountered will be an instance of a novel category. As we discuss
later, other models of unsupervised categorization including the simplicity model (Pothos
& Chater, 2002) and SUSTAIN (Love, Medin, & Gureckis, 2004) also allow novel categories
to be introduced.

This paper presents an empirical and computational treatment of the problem of
novelty detection. Although this problem is peripheral to the psychological literature on
categorization, it has been discussed extensively by biologists, computer scientists, and
statisticians (Markou & Singh, 2003a, 2003b; Marsland, 2003; Hodge & Austin, 2004; Pi-
mentel, Clifton, Clifton, & Tarassenko, 2014). A commonly-discussed version of the prob-
lem involves a biologist who has sampled the species that live in a certain area, and wishes
to estimate the probability that the next species encountered will be novel (Bunge & Fitz-
patrick, 1993). Many approaches to this problem have been developed, including frequentist
smoothing (Good, 1953; Katz, 1987; Gale & Sampson, 1995), parametric Bayesian mod-
els (e.g., Hill, 1968, 1979) and nonparametric Bayesian models (e.g., Ishwaran & James,
2003; Zabell, 2011; Favaro, Nipoti, & Teh, in press; Favaro, Lijoi, Mena, & Prünster, 2009).
These approaches have been widely used in practice, and one common application involves
predicting the probability that the next word in a textual corpus will never have been seen
before (Chen & Goodman, 1996).

Here we consider six distinct Bayesian models that build upon Anderson’s rational
model. The key difference between these models is in how they exploit the frequency distri-
bution over categories. The intuitive relevance of distributional information is highlighted
in Figure 1, which depicts several examples in which a series of chocolates are sampled from
boxes. In the first example (Figure 1a) the learner initially observes two different kinds
of chocolates (the 11 case), and as more chocolates appear they all belong to one of the
initial two categories. This sequence of distributions 11→21→31 is an example of what we
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Figure 1 . Frequency distributions based on chocolates sampled from three boxes. For
example, distribution 31 includes three chocolates from one category (brown squares) and
one chocolate from a different category (blue triangle). The inequalities shown below each
panel represent predictions about the probability that the next object sampled will belong
to a novel category. (a) The familiar addition effect. Observing a new exemplar that belongs
to a familiar category decreases the probability that the next object sampled will belong to
a novel category. (b) The novel addition effect. Observing a new exemplar that belongs to a
novel category increases the probability that the next object sampled will belong to a novel
category. (c) The transfer effect. Transferring an object from a high-frequency category to
a low-frequency category decreases the probability that the next object sampled will belong
to a novel category.
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will call the familiar addition effect. Intuition suggests that as this sequence continues, we
should become more convinced that there are only two types of chocolate and that no new
categories will be encountered: that is, adding new observations to old categories should
decrease the learner’s expectation that new categories will appear.

In contrast, consider the sequence depicted in Figure 1b, in which each new observa-
tion belongs to a novel category, producing the sequence 11→111→1111. This sequence is
an example of a novel addition effect, and in this case intuition suggests that each observa-
tion raises the probability that the next object observed will belong to a novel category. The
familiar and novel addition effects both seem very intuitive, but existing category learning
models do not capture them both. For instance, Anderson’s rational model captures the
familiar addition effect but not the novel addition effect. In particular, this model makes
the unintuitive prediction that distributions 31 and 1111 provide equal support for the
hypothesis that the next sample will belong to a novel category.

As a third – and less obvious – example, Figure 1c depicts a sequence 51→42→33
illustrating the transfer effect in which the numbers of exemplars and categories both remain
constant but the distribution of exemplars across the categories does not. As exemplars are
shifted “down” from high frequency categories to low frequency ones (from left to right) the
frequency distribution becomes less skewed and more balanced. Our intuitions about 1c are
less strong than our intuitions about 1a and 1b, but encountering a novel category seems
more likely given the skewed distribution (51) than given the balanced distribution (33). A
plausible explanation for this inference is that skewed distributions provide more support
for the idea that there are low-frequency categories that have not yet been observed.

As we will see, people are sensitive to all three effects in Figure 1, but many com-
putational models are not. We demonstrate that two of the six Bayesian models that we
consider are able to capture all of these effects, but all other models evaluated in this paper
fail to capture at least one of the effects.

The structure of the paper is as follows. In the next section we discuss a set of
intuitively reasonable axioms that give rise to the six Bayesian models. We then present
four experiments that probe the extent to which these models capture qualitative and
quantitative aspects of people’s inferences about novel categories. Experiments 1 and 2
explore how people respond to different frequency distributions, and include cases similar to
those shown in Figure 1. Both experiments use a paradigm in which participants predict the
probability that the next object encountered will belong to a novel category. Experiments 3
and 4 use a more traditional paradigm in which participants are shown a new object and can
either assign it to an old category or indicate that it belongs to a novel category. We vary
the extent to which the new object is similar to previously encountered objects, and find
that people’s judgments are influenced both by similarity and distributional information.
Following the experiments, we discuss the extent to which alternative approaches from
the psychological and statistical literatures can account for our data, and compare the
performance of the Bayesian models to eleven heuristic models.

A Bayesian framework for novelty detection

In order to develop specific probabilistic models for the detection of novel categories,
it is useful to situate the problem within the broader problem of categorization. Our for-
mulation of this problem is most naturally applicable to supervised settings in which the
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learner uses explicit feedback to learn categories, but the problem of novelty detection is
more general. As discussed later in the paper the novelty detection problem is closely
connected to unsupervised categorization, and our probabilistic approach can easily be ex-
tended to semi-supervised settings (e.g., Gibson, Rogers, & Zhu, 2013; Vong, Navarro, &
Perfors, 2016) or settings involving cross-classified stimuli (e.g., Shafto, Kemp, Mansinghka,
& Tenenbaum, 2011; Ross & Murphy, 1999).

Assigning new objects to old categories

A probabilistic account of supervised classification can be constructed as follows.
Suppose that the learner has encountered N labelled objects. We use xi to denote the
set of features associated with the i-th object, and use li to refer to the category label for
that object. Across all N objects, then, the information available to the learner consists of
all the featural information x1:N = (x1, x2, . . . , xN ) and all of the category labels l1:N =
(l1, l2, . . . , lN ). Taken together, x1:N and l1:N capture the relevant background knowledge
that the learner can use when seeking to classify a newly observed object.

If the problem of categorization is formulated in this way, what should a Bayesian
learner infer about the label of a novel object? Consider first the case in which the learner
knows that there are exactly K possible category labels. Bayes’ rule indicates that the
probability that the new object belongs to category k is

P (lN+1 = k | xN+1,x1:N , l1:N )
∝ P (xN+1 | lN+1 = k,x1:N , l1:N ) P (lN+1 = k | x1:N , l1:N ) (1)

where the normalizing term is found by summing over allK possible choices for the category
label. The first term in this expression is the likelihood function that describes the learner’s
beliefs about the probability that an object would have features xN+1 if it were sampled
from the k-th category. Anderson (1991) describes how this term can be formulated for
settings in which objects have discrete features, and settings in which these features are
continuous. Its role within the model is to serve as a measure of the extent to which the
new object is consistent with a particular category, and we discuss its connection to the
theory of novelty detection later in the paper.

The second term in Equation 1 describes the learner’s prior over the category labels,
and its psychological role in the model is to serve as the learner’s estimate of the category
base rates. If a novel object has features that are equally consistent with two categories,
then a Bayesian reasoner will guess that the new object belongs to the category with the
higher base rate. Consistent with this interpretation as a measure of subjective base rate,
the prior distribution over the next label lN+1 is assumed to depend on the labels l of the
previously observed stimuli but not upon their features x1:N . If this assumption holds, we
can drop this term from the prior and express the learner’s beliefs about the category labels
as P (lN+1 = k | l1:n). Furthermore, it is traditional to assume that the observations are
exchangeable, in which case the order in which the labels appear carries no information (but
see, e.g., Navarro, Perfors, & Vong, 2013). Under the assumption of exchangeability, all of
the relevant background knowledge is carried by the frequency table. If we let nk denote
the number of objects known to belong to category k, and let n = (n1, n2, . . . , nK) denote
the frequency table for all K categories, the prior probability of category k in Equation 1
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simplifies to
P (lN+1 = k | x1:N , l1:N ) = P (lN+1 = k | n). (2)

Given a frequency table n, what should the learner believe about the category label
of the next object? A naive approach is to rely on the empirical base rates and to treat the
probability that the next exemplar belongs to the k-th category as equal to the proportion
of existing exemplars that belong to that category, yielding the model

P (lN+1 = k | n) = nk
N
. (3)

This estimate of category frequencies arises in some uses of naive Bayes classifiers (e.g.,
Russell & Norvig, 2003, section 20.2) and – as we discuss later in the paper – is implic-
itly adopted by some non-Bayesian models such as the generalized context model (GCM:
Nosofsky, 1986). Despite its intuitive appeal this approach becomes incoherent when we
consider the possibility of never-before-seen categories. Under this model, the prior prob-
ability that the next observation belongs to a new category is estimated to be zero, so a
Bayesian reasoner who uses the prior in Equation 1 is unable to entertain the possibility of
novel categories. The only categories that this learner can acquire are categories that are
already known to exist! We therefore need some alternative way of characterizing the way
in which a frequency table shapes expectations about the category of the next object to be
observed.

One solution to the novelty detection problem

Anderson’s (1991) rational model of categorization (RMC) provides one possible solu-
tion to the problem. When presenting his original rational analysis, Anderson suggested that
the learner assumes that there is some fixed “coupling probability” that any two objects
belong to the same category, and from that assumption went on to derive the probabil-
ity that the next object belongs to a novel category. As discussed by Sanborn, Griffiths,
and Navarro (2010), it turns out that Anderson’s analysis from first principles induces a
prior that is formally equivalent to a well-known model in Bayesian statistics (the Chinese
restaurant process; CRP). According to the CRP the prior probability of an old category
is proportional to its observed frequency nk (as per the naive model in Equation 3), but
the CRP also assigns some strength θ to the possibility that the next observation will come
from a new category. Thus, under the CRP prior the probability that the next object comes
from the k-th old category is

P (lN+1 = k | n) = nk
θ +N

(4)

and the prior probability that the next object will be an exemplar from a hitherto unobserved
category is given by

P (lN+1 = new | n) = θ

θ +N
(5)

The strength parameter θ is directly related to Anderson’s original coupling probability
(Sanborn et al., 2010), and is a free parameter in the RMC that controls the probability
that new categories will be encountered.
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Perhaps because of the success of Anderson’s model (Anderson, 1991; Griffiths,
Canini, Sanborn, & Navarro, 2007; Sanborn et al., 2010), the CRP model has served as
the standard solution to the problem of novelty detection not only in the original RMC, but
across the many extensions and elaborations of the model (e.g. Shafto et al., 2011; Kemp,
Perfors, & Tenenbaum, 2007; Perfors & Tenenbaum, 2009). It is also used more generally
in the literature on nonparametric Bayesian statistics (see e.g., Gershman & Blei, 2012;
Navarro, Griffiths, Steyvers, & Lee, 2006). However, although the CRP model is widely
adopted as the solution to the problem of novelty detection, it has rarely been directly
investigated (see Austerweil (2014) for one exception). There are reasons to believe that it
may not adequately capture people’s expectations about novel categories. The CRP pre-
dicts, for example, that the probability of encountering a novel category depends only on
the strength parameter θ and the number N of objects already observed. This is a strong
empirical prediction that may not adequately capture people’s intuitions about when to
expect novel categories.

Deriving a more general model from qualitative desiderata

Arguably, much of the appeal of the CRP model stems from the fact that Anderson’s
analysis makes the psychological assumptions of the model explicit. The model described by
Equations 4 and 5 is simple, and the strength parameter θ is straightforward to interpret
as a pseudo-sample size: the possibility of a new category is assigned prior weight as if
it were an old category with an observed sample size of θ. It is possible, however, that
other assumptions – and hence other priors – might be better matched to human cognition.
Rather than attempt to specify a priori what set of assumptions might be “optimal” for
human cognition, we consider a family of plausible models and seek to test their predictions
empirically without making strong claims as to which (if any) of these models constitutes a
normative standard for categorization (e.g. Tauber, Navarro, Perfors, & Steyvers, in press).

An elegant way to develop alternative approaches is to formulate axioms that spec-
ify psychologically meaningful constraints on the beliefs that a learner might have about
categories. Consider the categorization problem as it appears to a learner who observes a
sequence of objects and their corresponding labels. What qualitatively sensible constraints
might a learner impose? Zabell (2011) suggests the following desiderata:

(1) Anything is possible: the learner does not know ahead of time what categories exist,
and does not rule out any sequence of labels a priori. Formally this axiom requires
that every sequence of category labels has positive probability.

(2) The probability of every old category depends only on its own observed frequency.
That is, the probability that the next object will belong to a previously observed
category depends on the observed base rate of that category, but not on the base
rates of other categories. Formally, this axiom states that the probability of old
category k depends only on the number of objects nk observed to belong to category
k and the total sample size N .

(3) The probability of a new category depends on how frequently new categories have
appeared in the past. More precisely, this axiom claims that the probability that the
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next observation belongs to a hitherto unobserved category is a function only of the
number of observed categories K and the sample size N .

If we further assume that there are at least two categories,1 Zabell shows that these three
axioms give rise to a very simple family of possible prior distributions that is characterized
by two parameters, θ and α. For distributions in this family, the probability that the next
observation belongs to the k-th existing category is

P (lN+1 = k | n) = nk − α
θ +N

(6)

and the probability that it belongs to a novel category is

P (lN+1 = new | n) = θ +Kα

θ +N
(7)

where 0 ≤ α ≤ 1 and θ + α > 0. These equations define a stochastic process that is known
as the generalized Chinese restaurant process (G-CRP: see Ishwaran & James, 2003), and
is closely related to the Pitman-Yor process (Pitman & Yor, 1997).2 The G-CRP has been
used by Goldwater, Griffiths, and Johnson (2011) to develop statistical models of language,
and has found multiple other applications in the statistics and computer science literatures.
As yet, it has found few applications in the psychological literature, but it has considerable
potential as a theory of novelty detection.

Viewed as a model of novelty detection, the G-CRP model offers an intriguing ex-
tension to the more traditional CRP model. In this account, the probability that the next
observation belongs to a novel category is the sum of two components. The first of these
is the θ

θ+N term from the more familiar CRP model: the learner assigns some base level
of strength θ to the possibility that a new category will appear, and this θ parameter can
be viewed as a pseudo-sample size associated with unobserved categories. The second term
is Kα

θ+N , which depends on the number of categories K that the learner has encountered
thus far. This term ensures that the more often that the learner actually encounters a new
category (which, by definition, must have occurred K times), the more likely it is that even
more new categories will subsequently appear. This idea has an intuitive appeal, and the
extent to which the model is sensitive to it is governed by the discount parameter α.

1In fact Zabell does not assume that there are least two categories, and in this case the family of dis-
tributions is rather more complicated and is characterized by three parameters. However, one of these
parameters is no longer relevant if the learner knows that there are at least two categories. Given that most
realistic situations involve scenarios where at least two categories are known to exist, we use the restricted
two-parameter version described in the text.

2Strictly speaking the G-CRP is a stochastic process that generates exchangeable random partitions
whereas the Pitman-Yor process (PYP) is usually taken to define a stochastic process that generates prob-
ability distributions. However, the two are closely connected: every distribution sampled from the PYP is
associated with a partition that assigns each observation to a cluster, and the partitions associated with
a PYP-generated distribution follow a G-CRP. Given the slightly inconsistent way in which the PYP is
defined, we have chosen to adopt the terminology from Ishwaran and James (2003) in which G-CRP is used
to describe the process that generates partitions, and the PYP is defined more narrowly to refer to the
closely related process that generates probability distributions.
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Table 1
Three Bayesian models for the novelty detection problem that can be derived via Zabell’s
axiomatic formulation of the problem (CRP, TTR, G-CRP) and their three hierarchical
counterparts (H-CRP, H-TTR, HG-CRP).

Parameter
Model Strength, θ Discount, α
Chinese restaurant process (CRP) Fixed 0
Types-tokens ratio (TTR) 0 Fixed
Generalized Chinese restaurant process (G-CRP) Fixed Fixed
Hierarchical Chinese restaurant process (H-CRP) Learned 0
Hierarchical types-tokens ratio (H-TTR) 0 Learned
Hierarchical generalized Chinese restaurant process (HG-CRP) Learned Learned

The role of the discount parameter can be described in the following way. In the CRP
model, every category has some strength, and the probability of that category is proportional
to its strength. Every time a new observation is assigned to an existing category the strength
increases by 1. When a new category is detected, however, there are two different things
the learner might wish to strengthen: the specific new category (which is now known to
exist), and the background belief that new categories will continue to appear. In the G-CRP
model, the strength “associated” with the most recent observation is split between these two
possibilities. The newly discovered category is only given a strength of 1− α (Equation 6)
and the remaining strength α is siphoned off and used to give additional strength to the
possibility that the next observation will belong to yet another new category (Equation 7).

In light of this discussion, Zabell’s three axioms give rise to three distinct probabilistic
models for the novelty detection problem, listed at the top of Table 1. The CRP model
assumes that people assign a fixed strength θ to new categories, whereas the G-CRP model
augments this with a discounting process governed by α that strengthens the prior proba-
bility of new categories every time a new category is observed. A third possibility is that
people only rely on the discounting process. That is, if we set θ = 0 then the prior probabil-
ity of a new category is given by αK

N . Given that K
N defines the proportion of observations

(tokens) that introduced a new category (types), we refer to this approach as the types-
tokens ratio model (TTR). This model is closely related to a stochastic process known as
the normalized stable process that has been explored in the statistics (Kingman, 1975) and
machine learning (Wood, Archambeau, Gasthaus, James, & Teh, 2009) literatures. Thus
all three models have some intuitive justification, and any one might make sense as a prior
in a Bayesian categorization model.

Learning the parameters of the prior distribution

The qualitative desiderata introduced by Zabell produce an elegant theory that uses
an observed frequency table n to estimate the probability that the next observation will
represent a new category. However, these estimates are dependent on two unknown param-
eters, the strength θ and discount rate α. How should these values be set? One possibility
is that these parameters represent fixed biases that the learner brings to the categorization
problem. According to this view, θ and α should be treated as model parameters: that is,
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quantities that the researcher needs to estimate from people’s behavior. This is the stan-
dard way in which researchers have interpreted these parameters in the past. For instance,
in the original applications of the RMC, Anderson (1991) used a fixed strength parameter
of approximately θ = 2.3, suggesting that people assign roughly the same prior weight to
never-observed categories that they would give to an actually-observed category with two
known exemplars.3

An alternative perspective is offered by considering the novelty detection problem
from the perspective of learners who endorse Zabell’s axioms but have little or no other
knowledge beyond the desire to satisfy these desiderata. These learners would agree that
Equations 6 and 7 provide a good description of the “true” generative process that gives
rise to the available observations, but would have no compelling reason to make strong
assumptions about the true values of α or θ. From this perspective, these parameters are
quantities that the learners must learn from experience. If the learners are Bayesian, they
would place a prior over α and θ, and update this prior as the observations arrive. This
perspective gives rise to the hierarchical Bayesian versions of the three models listed in the
lower half of Table 1, in which a learner uses the frequency table n not only to estimate the
probability of a new category, but also to learn the statistical properties of the stochastic
process that generates their observations. To formalize this idea we consider the most
general model, the hierarchical generalized Chinese restaurant process (HG-CRP), since the
other two models are special cases.

Suppose that a learner approaches the novelty detection problem with a prior P (θ, α)
that expresses their uncertainty, and seeks to infer those parameters from the observed
frequency table n. In this instance, Bayes’ rule gives

P (θ, α|n) ∝ P (n|θ, α)P (θ, α) (8)

where the probability of the frequency table P (n|θ, α) can be constructed by sequentially
applying Equations 6 and 7 as each new observation arises. Given a specific frequency table
n and the inferred distribution over the parameters P (θ, α|n), the probability that the next
observation represents a hitherto unseen category is estimated by taking a weighted average
of the predictions of every possible G-CRP model. More precisely, the learner constructs
the marginal probability of a new label by integrating out θ and α,

P (new | n) =
∫ 1

0

∫ ∞
−α

θ +Kα

θ +N
P (θ, α | n) dθ dα (9)

Equation 9 describes the predictions of the HG-CRP model, corresponding to a Bayesian
reasoner who uses the observed data to infer the strength θ and discount α parameters.
However, if the Bayesian reasoner started with one of the two restricted models (i.e., CRP
and TTR) rather than the full G-CRP model implied by Zabell’s axioms, then one of other
two hierarchical models (i.e., H-CRP and H-TTR) would result. The predictions from these
models are constructed by analogy to Equation 9, with one of the two parameters fixed at
0.

In order to construct a specific model that can be applied to human categorization
judgments, it remains to specify the prior distributions that the learner brings to the task. In

3Anderson actually set his coupling parameter to c = .3. As noted by Sanborn et al. (2010), the relation-
ship between the two is θ = (1− c)/c, yielding θ ≈ 2.3.
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θ

P(θ)

(a) prior distribution over 
CRPs supplied by the learner

(c) posterior distribution over 
CRPs inferred from data

(d) probability of a new 
category according to each 

possible CRP

P(new|θ,n)

θ

(e) estimated probability of 
a new category

(b) frequency table 
provided by the 

observed exemplars, n

θ

P(θ|n)

P(new|n)

θ

Figure 2 . A schematic illustration of the H-CRP model. The learner supplies a prior
distribution over the strength parameter θ (panel a), and then observes a frequency table
n (panel b). From this the learner infers the posterior distribution θ|n (panel c). Given
that every CRP (i.e., each value of θ) produces a specific prediction about the probability
of a new category given the observed frequency table (panel d), the learner can construct
an estimate of the probability of a new category (panel e) by taking a weighted average
of the prediction of each possible CRP (i.e., the dashed line). In panel e, the size of the
points is analogous to the height of the bars in panel c, illustrating the fact that the estimate
produced by the model is a posterior-weighted average of the individual CRPs. The H-TTR
and HG-CRP models are constructed in an analogous fashion.
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our applications we assume that the learner has independent priors over the two parameters,
implying that P (θ, α) = P (θ)P (α). For the strength parameter θ we use a generalized
Pareto distribution4, and for the discount parameter α we use a beta distribution,

P (θ) = 1
σ

(
1 + ξθ

σ

)−(1+1/ξ)
(10)

P (α) ∝ αβ1−1(1− α)β2−1 (11)

where P (θ) is defined in terms of a shape parameter ξ and a scale parameter σ, and P (α)
is defined in terms of two pseudo-count parameters β1 and β2.

Formal details aside, the important characteristic of all three hierarchical models is
that the learner uses the observed frequency table n to infer what kind of generative model
underpins the distribution of category labels. This approach is illustrated schematically
in Figure 2 using the H-CRP model as an example. Similar hierarchical approaches have
previously been used to explore how people form general expectations about the features
associated with categories (the likelihood in Equation 1), allowing them to make sensible
predictions about entirely novel categories (e.g., Kemp et al., 2007; Perfors & Tenenbaum,
2009; Perfors, Navarro, & Tenenbaum, submitted; Navarro, 2010). However, we know of no
psychological work using the RMC or related models that allows the strength parameter θ
to be learned, and almost no work that considers the discount parameter α at all.

Overview of the experiments

The qualitative principles outlined by Zabell give rise to three different models (CRP,
TTR, G-CRP) that a Bayesian reasoner might use to specify a prior for the novelty detec-
tion problem. When we extend Zabell’s model to accommodate the idea that the learner
infers which specific CRP/TTR/G-CRP prior to apply, we obtain three more models (H-
CRP, H-TTR, HG-CRP) that might underpin human categorization. Slotting these priors
into Equation 1 produces six different Bayesian models of categorization, each of which is
a variation on Anderson’s (1991) rational model. In order to evaluate these six models we
present a series of four experiments that explore human intuitions about the novelty detec-
tion problem. To keep our presentation as simple as possible, our initial evaluation focuses
on these six Bayesian models. Later in the paper we extend this evaluation by describing
several non-Bayesian models and considering the extent to which they account for our ex-
perimental data. To foreshadow our conclusions, only some of the Bayesian models (and
none of the non-Bayesian models) provide an adequate account of human behavior. Begin-
ning with the Bayesian models therefore allows us to illustrate what principles a successful
model of human novelty detection must satisfy.

The structure of the experimental work is as follows. In the first experiment, we
focus on the standard CRP model and show that it systematically fails to capture human
judgments, illustrating the need to move beyond Anderson’s original formulation of the
problem. The second experiment is designed to discriminate between the six models, and
finds evidence that the discount parameter α and the hierarchical learning mechanism are
both necessary. We show that the superior performance of the hierarchical models (espe-
cially the four-parameter HG-CRP model) is not an artifact of model flexibility, and that

4Specifically, a generalized Pareto with location parameter 0.
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the model is highly constrained in terms of the qualitative patterns of performance that
it can produce. The third experiment presents evidence from a standard categorization
task in which object similarity information is made available to participants, and the fourth
experiment adapts this standard design to more cleanly separate frequency and similarity
information. In both experiments we find that frequency information continues to play an
important role even when similarity information is available, and that the basic CRP model
continues to make incorrect predictions that are only remedied by adopting a hierarchical
approach.

Experiment 1

Our initial exploration takes a systematic approach, and considers all possible fre-
quency tables constructed from six or fewer exemplars. By comparing people’s intuitions
about different frequency tables we can test whether the assumptions of the simple CRP
model are correct, or whether more elaborate models are required to explain people’s ex-
pectations about undiscovered categories.

Method

Participants. The study was completed by 200 workers on Amazon Mechanical
Turk, who were paid US$1.50 for their time (approximately 10 minutes). 176 participants
were located in the United States, and 24 in India. 114 self identified as male, 84 as female,
1 as other.

Materials & Procedure. The goal of the experiment was to present people with
frequency tables that divided a set of exemplars into categories, and to measure people’s
beliefs about the probability that the next object would come from a hitherto unobserved
category. To that end, the cover story presented people with the following text:

Scientists interested in studying insect biology stake out square meter blocks, and
record the number of insects of different kinds that they see. In this task you’ll be
shown the results of 29 different “insect trap” experiments, taken from different
parts of the world. No two sites are alike, and different species are found at each
location.

For all 29 sites, you’ll be shown a list of the insects that have been observed so
far. Your task is to judge the probability that the next insect to be observed at
that location will belong to a new species, or one of the previous ones.

Participants were told that species were identified solely in terms of an arbitrary identifi-
cation code such as “GX12”, and that the various sites were unrelated and would involve
completely different insects. On each trial they were shown a stimulus display that listed
the insects captured so far. For example, the following display

GX12
GX12

NS81 GX12 BL56
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Table 2
The 29 distributions used in Experiment 1 correspond to the set of all possible frequency
tables defined over six or fewer exemplars. The listing below displays these 29 conditions as
a function of the number of exemplars N and the number of categories K over which they
are distributed.

K = 1 K = 2 K = 3 K = 4 K = 5 K = 6
N = 1 1
N = 2 2 11
N = 3 3 21 111
N = 4 4 31 22 211 1111
N = 5 5 41 32 311 221 2111 11111
N = 6 6 51 42 33 411 321 222 3111 2211 21111 111111

indicates that the trap has captured three GX12 insects, one NS81 and one BL56. The
assignment of species code and the ordering of categories was randomized, but always
preserved the “barplot-style” display shown above. Participants were asked to judge the
probability that the next insect captured by the trap would belong to a new species (i.e.,
a species other than GX12, NS81, or BL56). Responses were made using a slider bar, and
participants were allowed to familiarize themselves with the interface before proceeding with
the task. They also had to answer three instruction-check questions correctly before the
task began.

The 29 within-subject experimental conditions differed in terms of the category fre-
quencies. Using notation from Figure 1, the example given above depicts a 311 frequency
table, since the learner has seen three exemplars from one category (GX12) and one ex-
emplar each from two other categories (NS81 and BL56). The experiment presented all 29
possible frequency distributions defined over six or fewer exemplars. These distributions
are listed in Table 2.

Exclusions. Participant responses fell into one of three distinct groups, identified
by clustering analysis. 163 participants (82%) produced responses that were consistently
positively correlated with one another across all 29 conditions, suggesting that these partic-
ipants were using qualitatively similar strategies. Visual inspection of the responses hinted
that 5 of these 163 participants had been misclassified by the algorithm, leaving 158 partici-
pants (79%) whose responses are all in strong agreement. Of the remaining participants, 16
(8%) were consistently negatively correlated with the majority, suggesting that they unin-
tentionally reversed the response scale. The remaining 20 participants (10%) gave answers
that were uncorrelated with any other participant. Across these participants the average
response was very close to 50% for all conditions, suggesting that these participants gave
random responses. We present data from the majority group only, but note that this has
essentially no effect on the results: the majority group is so consistent and the minority re-
sponse patterns are so rare and dissimilar that including them has no effect on the averages
other than to create a slight regression to the mean.
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Figure 3 . Results from Experiment 1. The black lines plot mean responses for the human
participants, with error bars corresponding to 95% confidence intervals. The grey bars show
the corresponding responses for all six Bayesian models at the best fitting parameter values.
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Table 3
Parameter values for the three non-hierarchical Bayesian models (left) and three hierarchical
Bayesian models (right) when fit to the data from Experiment 1. When assessed in terms
of sum squared error (SSE) between model responses and the empirical data, it is clear that
the CRP model performs very poorly relative to the other five models.

Parameters
Model Strength θ Discount α SSE
CRP 3.35 1.138
TTR 0.73 0.039

G-CRP -0.19 0.76 0.030

Prior over θ Prior over α
Model Shape ξ Scale σ β1 β2 SSE
H-CRP 0.25 8.29 0.042
H-TTR 18.05 6.99 0.030
HG-CRP 1.21 0.018 9.47 3.55 0.035

Results

The results are shown in Figure 3, which plots the empirical data for all 29 conditions
(black lines) and the behaviour of all six models at best fitting parameter values (grey bars).
Model parameters were estimated using a simulated annealing procedure that minimized
sum squared error (SSE) between model predictions and data: the parameter values and
goodness of fit statistics are listed in Table 3. All the raw data are shown in the figure, but
in order to make sense of them it is useful to note that the results can be neatly summarized
in terms of the familiar addition, novel addition and transfer effects depicted in Figure 1.
The novel addition effect is summarized within each block in the plot (e.g, the first block
shows 1 →11 →. . . →111111) whereas the familiar addition effect appears across blocks
(e.g., the leftmost bars in the 1st, 2nd and 5th blocks show the sequence of conditions 1
→2 →3). The transfer effect (or absence thereof) can be seen by comparing specific bars
in which the number of exemplars and number of categories are held constant (e.g., 33, 42
and 51).

In order to estimate the evidence for and magnitude of each effect, we analyzed the
data using Bayesian linear mixed effects models with the help of the BayesFactor package in
R, and the evidence for each effect was computed after controlling for the other two effects.
To estimate the familiar addition effect, we first consider the 25 pairs of frequency tables
(e.g., 22 and 32) that differ by a single exemplar assigned to an old category. Using this
method, the effect of adding a single exemplar to an old category is to decrease the rated
probability that the next object will belong to a new category, by 9.2% on average. More
generally, when we analyze the data set as a whole using the linear mixed models approach,
the odds that this difference corresponds to a real effect are overwhelming, with the Bayes
factor estimated to be approximately 10241 to 1. In short, the familiar addition effect is real
and large, but as Figure 3 illustrates all six Bayesian models are able to capture it, so the
theoretical implications are minimal.

Next, consider the novel addition effect. There are 18 pairs of conditions (e.g., 22
and 221) that differ by a single exemplar that belongs to a novel category. Across all such
cases, the average effect is to increase the rated probability that the next observation will be
new by 7.5%. Using the Bayesian linear mixed model, we estimated that the odds that this
corresponds to a real effect are approximately 10103 to 1. Again the effect is real and large,
but as Figure 3 illustrates the theoretical implications of this are more substantive: the
CRP model cannot produce the correct effect at any parameter values (it always predicts
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an effect in the wrong direction). In contrast, the other five models are all able to produce
this effect in a human-like way for at least some choices of parameter values and for some
conditions, though it is noticeable that the TTR and H-CRP models both produce poor
fits when all categories have only a single exemplar (i.e., the 11, 111, . . ., 111111 group in
Figure 3).

Finally, consider the effect of transferring an observation from a high frequency cat-
egory to a lower frequency one. The design of Experiment 1 makes this effect harder to
measure, insofar as there are only 7 pairs of conditions that can be compared in this fashion.
Overall there appears to be no evidence of a systematic effect. The average observed change
in people’s judgments is only 0.3%, and corresponds to modest evidence (12:1) for a null
effect in the Bayesian mixed modeling. Again, visual inspection of Figure 3 suggests that
all the Bayesian models are capable of producing human like patterns (e.g., all six models
produce responses in condition 321 that are similar to those for condition 222).

Discussion

The empirical data illustrate two intuitively sensible qualitative trends, corresponding
to the familiar addition and novel addition effects. In accordance with the intuitions outlined
at the start of the paper, adding an exemplar to an old category decreases the inferred
probability that the next observation will represent a novel category, but the probability
increases when an exemplar from a novel category is added. Both findings seem obvious, yet
the most widely used model of novel category detection (the CRP) cannot account for both
of them because it is insensitive to the number of categories K that have been observed.
It does not distinguish between the effect of adding an observation to an existing category
and the effect of observing an exemplar from a previously unobserved one. Humans make
a clear distinction, drawing opposite inferences from these two kinds of event. All other
models successfully capture the effect to some extent, and although the performance of the
H-CRP and TTR models is somewhat unconvincing it is difficult to discriminate among
the G-CRP, H-TTR and HG-CRP models on the basis of these data. Our conclusions are
similar to those drawn by Austerweil (2014), who found that the G-CRP model captured
human biases about object clustering better than did the CRP model.

The apparent absence of a transfer effect is interesting. All six models accommodate
this null effect, but they do so in different ways. It is obvious from Zabell’s third axiom (or
an inspection of Equation 7) that the three non-hierarchical models can never produce a
transfer effect: by design, the probability of a novel category depends only on the number
of old categories K and the number of observed exemplars N . For these models, the null
effect of transfer is a true null effect.

The situation is different for the hierarchical models. These models are based on the
G-CRP model, and therefore every specific choice of θ and α yields a prediction that de-
pends only on K and N . In that sense they are consistent with Zabell’s axioms. However,
the learning mechanism built into these models can allow them to violate this axiom in prac-
tice, because the (HG-CRP) model averages over the posterior distribution P (θ, α|n) when
making predictions about novel categories, not the prior distribution P (θ, α). If balanced
and unbalanced frequency tables (e.g. 22 and 31) induce different posterior distributions,
then a hierarchical model will form different expectations about novel categories in these
two cases.
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Figure 4 . An illustration of why the H-TTR model makes different inferences about α when
presented with the frequency table 31 than when it is given 22, even though both tables
involve N = 4 exemplars spread across K = 2 categories. See main text for details.
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Figure 5 . Posterior distribution over α in the H-TTR model for four different frequency
tables. The prior in all four cases is a uniform distribution (i.e., β1 = β2 = 1).
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Does this happen in practice? For the H-CRP model it is straightforward to prove
that it does not (see Appendix). The posterior distribution P (θ|n) depends only on N and
K and therefore the model cannot produce a transfer effect. For the other two models,
both of which can learn the discount parameter α, the situation is different. For the H-
TTR model for instance, the posterior distribution P (α|n) depends on the entire frequency
table, not merely the summary statistics N and K. As a consequence the model can in
some situations produce a transfer effect.

To understand why this happens, it is helpful to examine the mechanism by which
the discount parameter α shapes the learner’s belief updating within the G-CRP. When
an observation appears from a novel category, the discount parameter describes how the
“strength” associated with this observation is split between reinforcing the learner’s beliefs
that (a) this specific newly-discovered category will re-occur (b) yet another new category
will appear. So far we have focused on (b), but (a) is equally important. In the simple CRP
model a newly discovered category has strength 1 because it has been observed once. In
the G-CRP model, however, the initial strength is only 1−α because of the belief splitting
mechanism described above. However, because all later exemplars of this category do not
introduce a novel category, no such belief splitting occurs and so the difference in strength
between the G-CRP model and the CRP attenuates. For example, the strength of a new
category drops from 1 in the CRP to 0.2 in a G-CRP model with α = .8, an 80% reduction.
Once 10 exemplars have been observed the difference is merely an 8% reduction (from 10
to 9.2).

This simple mechanism has non-obvious implications, as spelled out in Figure 4. The
figure shows the entire inferential procedure for a variation of the H-TTR model in which
the learner considers only three possible discount rates, corresponding to α values of 0.25,
0.50 and 0.75. For simplicity we imagine that this learner has observed two exemplars from
category A and one from category B, yielding the 21 frequency table shown on the left
hand side of Figure 4, and that the learner’s current beliefs about α are uniformly divided
between the three possible values. Using this simplified H-TTR model we consider what
happens when the next observation arrives. There are only three possibilities: the next
observation might belong to one of the two existing categories (A or B) or to a completely
new one (C), so the frequency table will either become 31, 22 or 221, as shown in the
figure. The critical comparison is between the 31 case and the 22 case: if these differ in a
systematic way, then the H-TTR model produces a transfer effect.

First consider the 22 table. According to the TTR model, the probability that the
next observation belongs to category B, thereby producing the 22 table, is (1− α)/3. The
closer α is to 1, the closer this probability is to 0. So the likelihood function shown in the
middle row of Figure 4 shows a strong bias: the observation is three times more probable
when α = .25 than when α = .75. As a consequence, the learner’s posterior over α shows a
strong bias towards smaller values of α. Now consider the 31 table. The probability that
the next observation belongs to category A – thereby producing the frequency table 31 – is
(2− α)/3. The likelihood that a new observation belongs to category A is far less sensitive
to α: when α = .75 the observation is only 1.4 times as likely as it would be if α = .25,
so the evidence for small α is much weaker, and the corresponding posterior distribution is
much flatter.

To summarize, uneven frequency tables are prima facie evidence for larger discount
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rates; and because larger values of α imply that more new categories are to be expected,
any model that can learn the discount rate from data (i.e., H-TTR and HG-CRP) predicts
that new categories are more likely when given an asymmetric table (e.g., 31) than when
given a uniform table (e.g., 22) with the same number of exemplars and categories.

This raises a second question: if the H-TTR and HG-CRP models predict a transfer
effect, why are they able to fit the data from Experiment 1 so effectively even though no
such effect was observed empirically? It turns out that while these models do predict a
transfer effect, the size of the predicted effect is very small for the frequency tables used in
Experiment 1. This is illustrated for the H-TTR model in Figure 5. The left panel depicts
the posterior distribution P (α|n) for two different frequency tables used in Experiment
1, 222 (solid lines) and 321 (dashed line). Both of these frequency tables divide N = 6
exemplars among K = 3 categories, but the 222 table divides the exemplars more evenly
than the 321 table. As the figure illustrates, a more uneven frequency distribution shifts
the posterior distribution over α towards larger values as one would expect, but the effect
size is very small. For a learner with a uniform prior over α (i.e., parameters β1 = β2 = 1),
the predicted probability that the next observation represents a novel category is 22% for
the 222 table, and 24% for the 321 table. Experiment 1 was not powered to detect an effect
of that size. In contrast, the effect becomes much larger when more exemplars are shifted.
The right panel of Figure 5 shows the comparison between the 222222 table and the 711111
table: transferring five exemplars in this fashion produces a much larger difference in what
the learner infers about α. In this instance, the H-TTR model predicts a 23% chance of
encountering a novel category when presented with the 222222 table, and a 36% chance
when the table is 711111.

Experiment 2

The results of Experiment 1 provide strong evidence for the intuitively reasonable
claim that familiar additions decrease the probability of a novel category, and novel additions
increase that probability. This provides strong evidence that the CRP is inadequate as a
model for human novelty detection, and modest evidence against the TTR and H-CRP
models. However, as the previous discussion illustrates, Experiment 1 was not powered
to detect a transfer effect. Given the theoretical relevance of such an effect, we designed
a second experiment in which the transfer effect predicted by the H-TTR and HG-CRP
models should be large enough to detect.

Method

Participants. The study was completed by 200 workers on Amazon Mechanical
Turk, who were paid US$1.50 for their time (approximately 10 minutes). 196 participants
were located in the United States, 3 in India and 1 in Venezuela. 98 self identified as male,
102 as female.

Materials & Procedure. The frequency distributions used in Experiment 2 in-
cluded all cases where the learner has seen exactly 12 exemplars divided among at least 2
and no more than 10 categories, subject to the restriction that there were at most two dis-
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Table 4
The 32 frequency distributions used in Experiment 2, listed as a function of the number of
categories K. The vertical position of each object provides a partial ordering over frequency
tables for each value of K. This ordering is derived by considering whether exemplars need
to be transferred “up” or “down” in order to transform one table into another. Ties occur
when exemplars need to be transferred in both directions. See main text for details.
Rank K = 2 K = 3 K = 4 K = 5 K = 6 K = 7 K = 8 K = 9 K = 10
1 [11]1 [10]11 9111 81111 711111 6111111 51111111 411111111 3111111111
2 [10]2 822 5511 42222 441111 2222211 33111111 222111111 2211111111

6222
3 93 552 4422 33222 333111 22221111

633
4 84 444 3333 222222
5 75
6 66

tinct exemplar frequencies.5 This produces the 32 conditions listed in Table 4. The primary
difference between conditions is the number of categories K over which the 12 exemplars
are distributed. However, for every value of K, the conditions can be (partially) ranked in
terms relevant to the transfer effect in Figure 1c. The 9111 frequency table is deemed to be
more unbalanced than the 6222 table (and thus receives a higher rank) because we can pro-
duce the 6222 condition by transferring exemplars “down” from high frequency categories
to low frequency categories. Operationalized in this fashion, the 6222 condition is neither
above nor below the 5511 condition because one exemplar must be transferred “down” and
two exemplars transferred “up” to produce the 5511 table from the 6222 table. and ac-
cordingly they are assigned the same rank. We use this partial ranking over conditions to
operationalize the transfer effect.

Exclusions. Clustering of individual subject responses produced the same qualita-
tive pattern as in Experiment 1. The majority group consisted of 161 participants (80.5%)
whose responses all show strong positive correlations.In addition there were 20 participants
(10%) who appeared to reverse the response scale, and 19 participants (9.5%) whose re-
sponses appear to be random. As before, we present data from the majority group, again
noting that the averages taken across all participants are essentially identical to the major-
ity.

Results

The empirical results and corresponding model fits are shown in Figure 6. Each panel
plots the predictions of one model (grey bars) with the empirical data overlaid (black lines).
Within each panel, the 32 frequency tables are divided up into groups consisting of all
frequency tables that involve the same number of categories, and within each group the
conditions are sorted by their rank as per Table 4.

5The reason for imposing this restriction was that there are 77 distinct frequency tables that can be
produced by allocating 12 objects to categories. Our concern was that 77 conditions was too many to run,
and we wanted a procedure for selecting a subset of these that would allow tests of the transfer effect without
introducing a demand effect by calling attention to the hypothesis being tested.
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Table 5
Parameter values for the three non-hierarchical Bayesian models (left) and three hierarchical
Bayesian models (right) when fit to the data from Experiment 2.

Parameters
Model Strength θ Discount α SSE
CRP 7.97 1.147
TTR 0.94 0.030

G-CRP -0.25 0.92 0.027

Prior over θ Prior over α
Model Shape ξ Scale σ β1 β2 SSE
H-CRP 1.54 9.83 0.643
H-TTR 36.72 .154 0.021
HG-CRP 0.41 6.77 9.47 0.49 0.014

Visual inspection of the plots reveals that the number of categories has a large effect,
which is not surprising given the results of Experiment 1. As before, we tested effects using
linear mixed models with the BayesFactor package in R, including fixed effects for the rank
and the number of categories and a random effect of subject. Not surprisingly, we find an
effect of the number of categories. Increasing the number of categories by one increased
the probability of a new category by 7.3% on average, corresponding to a Bayes factor of
approximately 10671 to 1 in favor of an effect. The CRP model again entirely fails to capture
this qualitative effect, but all other models are able to capture it.

The theoretically interesting result is that Experiment 2 reveals a clear transfer effect.
Within each group of conditions, responses decrease from left to right, consistent with
the predictions of the H-TTR and HG-CRP models but not with the other four Bayesian
accounts.6 Again using linear mixed models to quantify the strength of evidence for this
effect, we obtain overwhelmingly strong evidence (Bayes factor of approximately 109) for
a real transfer effect, but – consistent with the models and with Experiment 1 – the size
of the effect is modest. The estimated effect of transferring a single exemplar from a high
frequency category to a lower frequency one is to reduce the probability of new categories by
0.9%, an effect size that would have been very difficult to detect in Experiment 1 given the
smaller number of relevant comparisons and the drastically smaller differences that those
comparisons entailed.

Discussion

The primary conclusion from Experiment 2 is that people’s intuitions about the prob-
ability of encountering a novel category are sensitive to more than the number of exemplars
N and the number of categories K: the shape of the frequency distribution matters also.
Among the six Bayesian models that we proposed at the beginning of the paper, only two of
them (H-TTR and HG-CRP) are capable of producing this effect. The CRP, TTR, G-CRP
and H-CRP models all predict that inferences should depend solely on the total number of
categories and the total number of exemplars, not on the manner in which exemplars are
distributed across them.

One possible concern is that the hierarchical Bayesian approach is able to account for
the data solely due to model flexibility. For example, in order to place priors over both θ
and α, the HG-CRP required us to specify four parameters (σ, ξ, β1 and β2). Given these

6The slight within-block variation in the H-CRP model is caused by simulation error: were we able to
compute the predictions of this model exactly these predictions would be flat. As noted earlier, the H-CRP
model cannot produce any version of the transfer effect.
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Figure 6 . Results from Experiment 2. The black lines plot mean responses for the human
participants, with error bars corresponding to 95% confidence intervals. The grey bars show
the corresponding responses for all six Bayesian models at the best fitting parameter values.
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four parameters, it is natural to wonder whether the HG-CRP model is flexible enough to
capture any possible trend in the data. We addressed this concern by running a simulation
study to check the robustness of the model predictions. Across the entire range of parameter
values that we simulated (uniform distribution over [0,10] for all four parameters) the HG-
CRP always predicts a negative effect of adding an exemplar to an category and a positive
effect of adding an exemplar from a novel category. Similarly, it always predicts a transfer
effect, but the effect is invariably much smaller than the other two effects, and at some
parameter settings can be almost null. In short, despite having the most parameters of any
model that we considered the HG-CRP model does not produce any qualitative pattern
other than the one produced by human participants.

Alternative models

So far we have considered six Bayesian models that are all related to Anderson’s
rational model (1991). Our results suggest that capturing the three key effects (familiar
addition, novel addition, transfer) is not simple: of the six models we considered, only
two can do so. We now consider the extent to which several non-Bayesian approaches can
account for our data.

Heuristic models

Table 6 lists 11 possible heuristics that can be applied to Experiments 1 and 2. In each
case the heuristic is fairly intuitive, but nevertheless fails to capture at least one theoretically
important qualitative trend in the data, as the table illustrates. In addition, Figure 7 shows
that each heuristic fails to produce a good quantitative fit to the data. It is of course
impossible to rule out every possible heuristic, and better fits might be possible if multiple
heuristics are combined, but the results challenge the idea that there is a single, simple
heuristic that will account for our data. Human intuitions about the novelty detection
problem seem to be a good deal more sophisticated than simple heuristic models would
imply.

Exemplar models

If simple heuristics cannot mimic human performance on these problems, how do
existing categorization models fare? One very successful family of categorization models as-
sumes that the learner stores all previously observed exemplars in memory, and categorizes
new objects by assessing the similarity between old objects and new ones. The generalized
context model (GCM; Nosofsky, 1986) is the best known of these exemplar models. Ac-
cording to the GCM, the probability that a new object belongs to the k-th old category
is proportional to the sum of its similarities to the other objects known to belong to that
category:

P (lN+1 = k) ∝
∑
j|lj=k

sim(xN+1, xj) (12)

where sim(·, ·) is a function that measures the similarity between two objects, and the
normalizing term is found by summing across all old categories. For Experiments 1 and
2 we did not show people any object features, merely the labels. Without any observable
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Table 6
Eleven heuristics for the novelty detection problem. None of these models is capable of
capturing all the qualitative trends in the data from Experiments 1 and 2.

• Smallest frequency. The learner’s response is proportional to the frequency of the lowest
frequency category. This model fails because it cannot account for systematic effects among
conditions with the same minimum frequency (e.g., 11<111< . . . <111111). See panel (a) of
Figure 7.

• Largest frequency. As above, but the response is based on the modal category. This model
does not account for systematic effects among conditions with the same maximum frequency
(e.g., 11<111< . . . <111111). Plotted in panel (b) of Figure 7.

• Largest versus smallest. The response is based on the difference (or ratio) between the most fre-
quent and least frequent category. It cannot produce systematic effects among conditions when
the maximum and minimum are identical (e.g., 11<111< . . . <111111, 21<211< . . . <21111).
The difference model is shown in panel (c) and the ratio model in panel (d).

• Tokens minus types. A variation of the TTR model in which the response is based on the
difference between the number of exemplars and the number of categories rather than the
ratio. It cannot predict any version of the transfer effect in Experiment 2. Shown in panel
(e).

• Singleton count/proportion. The response is based on the number (or proportion) of categories
that have frequency 1. This model does not account for systematic effects when exemplars are
added to the modal category (e.g., 21>31>41>51). The number version is plotted in panel
(f) and the proportion version in panel (g).

• Small category count. The response is in proportion to the number (or proportion) of cate-
gories with frequency k or less, where k is a free parameter. This model cannot produce a
smooth trend when exemplars are added to the modal category as in 11>21> . . . >51. It
(incorrectly) produces a discontinuity at the value of k. For example, at k = 3 it predicts
11=21=31<41=51. Best fitting model predictions are shown in panels (h) and (i).

• Number of exemplars in small categories. The response is proportional to the number of
exemplars belonging to small categories, where small is defined via a threshold frequency k.
Many observed effects require different values of k. For instance, capturing 311>32 requires
k = 1 whereas capturing 311>411 requires k = 3. The model cannot capture these effects
simultaneously. Shown in panel (j).

• Proportion of exemplars in small categories. As above, but defined in terms of the proportion
of exemplars in categories with frequency k or below, rather than the absolute number. This
model cannot predict systematic effects when all categories have the same frequency (e.g.,
1<11< . . . <111111, 2<22<222). Shown in panel (k).
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(g) Singleton proportion (h) Small category count
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(i) Small category proportion (j) Number of exemplars in small categories
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(k) Proportion of exemplars in small categories (l) Simplicity model
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Figure 7 . Predictions of all eleven heuristics listed in Table 6 and the simplicity model
for Experiments 1 (left) and 2 (right). In each case, the highlighted conditions illustrate
the particular qualitative failure of the heuristic described in the corresponding entry in
Table 6. To put the model predictions on the same scale as the human data, each set of
predictions was passed through a linear regression function with a slope parameter and an
intercept parameter. In addition to these two parameters, some of the heuristics have an
extra free parameter as described in Table 6. All free parameters were set by minimizing
sum squared error.
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stimulus features other than the label, the similarity function sim(·, ·) is difficult to specify,
but it seems reasonable to assume that the similarities are constant for any pair of objects.
If so, then the response strength for any given category is proportional to the number of
exemplars:

P (lN+1 = k) ∝ nk (13)

The fundamental difficulty in applying the GCM is that Equation 13 does not provide a
mechanism by which a response strength can be assigned to a novel category. If there are
no stored exemplars, the response strength according to the GCM is zero. A natural way to
adapt the GCM is suggested by Nosofsky (1991b) who applied a variation of the model to
recognition memory experiments: an object is labelled as “new” if the summed similarity
to all exemplars is below some criterion level of familiarity. On that basis one might argue
that this criterion level can also serve as a response strength for a novel category. However,
this approach produces a model in which the response strength is proportional to sample
size for all old categories, and described by a fixed response strength for novel categories:
in other words, the CRP.

The fact that an extended GCM ends up equivalent to Anderson’s rational model (and
fails for the same reasons) is perhaps unsurprising, given that the connection between the
GCM and the rational model has been discussed elsewhere in the literature (e.g., Nosofsky,
1991a, 1998). However the connection we have drawn here is somewhat different and slightly
more general, in a fashion that is closely connected to the novelty detection problem itself.
The derivation presented by Nosofsky (1991a) shows that the original GCM is equivalent to
Anderson’s model only when the coupling parameter c is set to 0 (i.e., θ →∞) during the
training phase of an experiment and then shifts to c = 1 (i.e., θ = 0). In many situations
this inconsistency does not matter, but for novelty detection it is critical: the strength
parameter θ provides the mechanism by which the RMC is able to detect novel categories,
and it is exactly with respect to this parameter that the correspondence between exemplar
models and Anderson’s model breaks down. Our suggestion, in contrast, is that the GCM
can be extended by connecting the novelty detection problem to recognition memory, but
that even this extended GCM fails in the same fashion as Anderson’s original formulation
of the RMC.

Finally, it is worth noting that the shortfalls of this version of the GCM are not
necessarily fatal to exemplar models generally. For example, Stanton and Nosofsky (2013)
describe an exemplar model in which the “background noise” parameter scales with the
number of categories K, and Nosofsky, Little, Donkin, and Fific (2011) describe one in
which it scales with the number of exemplars N . Plausibly, these mechanisms could be
adapted to produce a version of the GCM that behaves similarly to the G-CRP model, and
additional theoretical development could potentially yield a model that produces human-like
transfer effects as the H-CRP and HG-CRP models do.

Connectionist models

An alternative approach to categorization relies on connectionist networks. For ex-
ample, the ALCOVE model (Kruschke, 1992) is a connectionist network that extends the
GCM, and fails to address the novelty detection problem because – like the GCM – it relies
on the summed similarity rule in Equation 12 to form response strengths and does not have
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a mechanism for assigning strength to a never-before-seen category. Other connectionist
models, however, do not share this reliance on the summed similarity rule. SUSTAIN (Love
et al., 2004), for example, is a connectionist model that represents categories in terms of a
set of clusters. It begins with a single cluster that includes a single object, and can intro-
duce new categories as subsequent objects are encountered. During supervised classification
tasks SUSTAIN does not have a mechanism for recruiting new clusters until after feedback
is provided, and in that sense it cannot solve the novelty detection problem in the sense
we have described it (i.e., rejecting all previous labels and deciding that a new category is
needed).

However, SUSTAIN does provide a mechanism for cluster recruitment in an unsuper-
vised learning context that is somewhat more relevant to the problem. Specifically, a new
category is introduced if the similarity between the current object and the closest existing
category lies below a threshold, denoted τ . Unfortunately this solution does not accommo-
date our results. Again working from the assumption that that the similarity is roughly
constant (because participants were only shown arbitrary labels) the fact that τ is constant
across learning is problematic: it implies that SUSTAIN would make identical predictions
about every condition in our Experiments 1 and 2. Alternatively, just as we considered a
hierarchical version of the CRP that can learn the strength parameter, it should be possible
to develop a hierarchical version of SUSTAIN that can learn the τ parameter in the same
way that it learns other unknown quantities (i.e., gradient descent on error). Extending
SUSTAIN in this way may allow it to account for our results, but it is not obvious (to us
at least) what specific assumptions would be required to make this work. For the present
purposes, it suffices to note that the standard version of the model does not capture the
qualitative effects in our data.

Connecting novelty detection to unsupervised categorization

Of the categorization models discussed so far, SUSTAIN and Anderson’s model are
the only two that offer solutions to the novelty detection problem without requiring ex-
tensive modification. They are also the only two models that can perform unsupervised
categorization as well as supervised categorization. This is not coincidental, because there
is a formal connection between unsupervised learning and novelty detection, which we now
outline.

Unsupervised categorization is the problem of organizing a set of objects into a system
of categories S, and formal approaches to this problem can typically be understood in terms
of a function that measures the goodness of a category system g(S). The novelty detection
problem can be connected to unsupervised learning as follows. Suppose that the learner
has encountered a set of N objects known to be categorized into a system SN that contains
K categories. When the next observation arrives the learner can assign it to one of the
K existing categories or to a new category K + 1. Deciding whether a new object belongs
to a novel category is a matter of comparing the goodness of the system that assigns the
object to a new category to the goodness of systems that assign the object to an existing
category. Formally, if SkN denotes the category system that would result if the new object
were assigned to the k-th category, the probability of the learner doing so can be calculated
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using the Luce choice rule,

P (lN+1 = k) = g(SkN )
K+1∑
i=1

g(SiN )
(14)

where g(·) is the goodness function. As long as the goodness function is well-defined for
every category system S, the corresponding unsupervised learning model can be converted
into a model of novelty detection using Equation 14.

Unsupervised GCM and the simplicity model

Besides SUSTAIN and Anderson’s model, there are at least two other unsupervised
categorization models that we might consider adapting via Equation 14, namely the sim-
plicity model (Pothos & Chater, 2002) and the unsupervised GCM (Pothos & Bailey, 2009).
The unsupervised GCM (uGCM) turns out to be inapplicable to our data, because it does
not define a goodness function g(·) that is well-defined for the category systems of interest.
To see why, note that the uGCM measures the goodness of a category system by taking each
object out of the system and using the regular GCM to predict how it should be categorized.
A system is considered good to the extent that the GCM predicts the correct label of each
held-out object with high confidence. However, because the original GCM does not have
a mechanism for introducing novel categories, the uGCM does not have a mechanism for
scoring the goodness of any system in which some categories contain a single object only.
Despite being an unsupervised learning model the uGCM is not applicable to the novelty
detection problem for exactly the same reason that the GCM is inapplicable: it relies on
similarity to stored exemplars.

The final model that we consider is the simplicity model (Pothos & Chater, 2002),
which develops a goodness function based on information theoretic considerations. The sim-
plicity model proposes that good category systems have simple descriptions, where “simple”
in this instance means “short”. The descriptions considered are two-part codes: the first
part specifies a grouping of objects into categories, and the second part specifies similarities
among objects given this grouping into categories. The overall goodness of a system is
defined as the sum of the lengths of these codes. We combined this goodness function with
Equation 14 to generate the model predictions shown in Figure 7l (additional details can
be found in the Appendix). The simplicity model performs relatively well, and achieves an
overall sum-squared error that is lower than the errors achieved by the best heuristic model.
The model, however, is unable to capture the transfer effect in Experiment 2. The model
predicts that the probability of encountering a new category depends only on the number
of objects and the number of categories encountered thus far, and therefore makes identical
predictions about each group of conditions in the right plot of Figure 7l.

Summary

The alternative models considered here do not exhaust the set of possible novelty de-
tection models. Our discussion of these alternatives, however, illustrates that it is surpris-
ingly difficult to capture the qualitative trends and quantitative results from Experiments
1 and 2. To the best of our knowledge, there is no existing psychological model that can
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match the performance of the H-TTR and the HG-CRP models, nor is there an obvious
alternative to them at this stage.

Experiment 3

The Bayesian approach to categorization outlined in Equation 1 relies on the prior
P (lN+1|l1:N ) to form expectations about the rates with which different categories will ap-
pear, and because this prior is shaped by the frequency table n our experimental work
has focused on the way in which different frequency tables influence people’s prior expec-
tations. In order to isolate the effect of frequency information from the effect of similarity,
Experiments 1 and 2 presented people only with a set of arbitrary labels. However, most
category learning experiments do provide people with information about stimulus similar-
ity, as do most everyday categorization problems. The Bayesian framework is well suited
to capture similarity effects through the likelihood P (xN+1|x1:N , l1:N ), as discussed by An-
derson (1991), and in light of the importance of similarity to categorization it is important
to investigate how similarity influences the novelty detection problem.

Previous work has suggested that object frequency and stimulus similarity have in-
dependent effects on categorization (Nosofsky, 1988), and so one might expect that models
that performed well in Experiments 1 and 2 should continue to do so when similarity is
introduced as a factor. However, given that previous work did not consider the novelty
detection problem (i.e., object frequency effects were considered only with respect to exem-
plars of old categories), it is important to consider how similarity and frequency distribution
interact in this situation. Experiment 3 used a standard supervised categorization design
to explore how frequency information affects novelty detection when similarity information
is also present.

Method

Participants. The study was completed by 400 workers on Amazon Mechanical
Turk, who were paid US$0.75 for their time (approximately 7 minutes). Data were not
received for 1 participant. Among the remaining 399 participants, 368 participants were
located in the United States, 24 in India and 7 elsewhere. 214 self identified as male, 184
as female and 1 did not answer.

Materials & Procedure. There were 12 sets of stimuli that varied along a single
stimulus dimension, one per condition. The stimulus sets are depicted in Figure 8. An initial
calibration study was used to keep the discriminability of the different stimulus sets fairly
similar, but given variations in individual thresholds and in the testing conditions across
workers using different machines, the more important control was that the assignment of
stimulus sets to logical conditions was randomized across subjects.

The logical design of the experiment is shown in Figure 9. There were 6 distinct
exemplar frequency distributions, corresponding to the 11, 111, 1111, 21, 31 and 211
conditions from Experiment 1. As Figure 9 illustrates, there is always a critical category
(category A) that consists of a single exemplar located at stimulus value 75 (see Figure 8).
All other training exemplars, regardless of which category they belonged to (categories B,
C and D) were located at value 60 or below, and their locations were chosen in order to
convey the sense that categories were relatively homogeneous. There were two critical test
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Value Set 1 Set 2 Set 3 Set 4 Set 5 Set 6

55

75

Value Set 7 Set 8 Set 9 Set 10 Set 11 Set 12

55

75

Figure 8 . The stimuli used in Experiment 3 consisted of 12 different sets of objects that
varied along one dimension. Examples of each stimulus set are depicted above, showing the
stimuli with values of 55 and 75 on the scale depicted in Figure 9.
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Figure 9 . The design of Experiment 3 involved 6 different category structures, each cor-
responding to a different frequency table. For each category structure there were two test
locations, one near to the training items and one more distant, yielding a total of 12 distinct
conditions. See main text for details.
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items, one located at stimulus value 85 (the near object) and the other at 95 (the far object).
The 6 frequency distributions and 2 similarity levels produced 12 within-subject conditions,
completed by participants in a random order.7

The cover story introduced the categorization task by explaining to participants that
their goal was to learn about an alien language. As before, the instruction set explained the
interface and the procedure, and participants had to correctly answer three instruction check
questions before being allowed to proceed with the task. In each condition participants were
shown the training stimuli in a random order followed by one test item. Each condition
consisted of several trials, in which participants were required to predict the label of the
most recently presented item and were provided with feedback at the end of every trial,
except for the test trial.

Within each condition, the trials proceeded as follows. At the start of each condition
the first stimulus was displayed with the category label printed underneath. Labels were
three letter nonsense words (e.g, “dax”) that were never repeated across conditions and
randomized across participants. The second object was then displayed next to the first,
with no label shown (question marks were shown instead). Participants were given the
option of indicating that the second object belonged to the same category as the first one,
by pressing a button displaying the relevant category name, or guessing that it belonged to
a new category by pressing a button that read “new”. After making their choice, the correct
label – sometimes one of the previously encountered labels and sometimes a new one – was
revealed underneath the object, replacing the question marks.8 After a 1 second delay, the
next object was presented adjacent to the previous ones with question marks underneath
and the response options updated if a new category label had just been introduced. A
screenshot showing the experiment in progress (on the second trial of one condition) is
shown in Figure 10.

Within each condition, all objects remained on screen for the entire task, ensuring
that when the test item was shown on the final trial, all training items and their labels were
available. The test item was not announced, ensuring that the participants had no reason
to think that this trial would be any different to the preceding ones. No feedback was given
on the test item. Indeed, the reason for having one test item per condition rather than two
was to ensure that people did not learn anything from the test items, nor recognize that
there were any special test items at the end.

Exclusions. As in Experiments 1 and 2 we used correlations among participant
responses to determine if we could detect qualitative patterns of individual difference, taken
only across the 12 test judgments: order effects in presentation mean that these are the
only responses that are comparable across individuals. No patterns of individual differences
were found which is perhaps not surprising. The simplicity of the task ensured that people
could not “reverse” the response scale as sometimes happened in Experiments 1 and 2, and
the fact that each participant provided only 12 judgments limits the ability to detect people
responding randomly. We therefore include data from all 399 participants in the analysis.

7There were minor failures of randomization in this experiment caused by a coding error. These issues
were rectified for the replication in Experiment 4, and the close agreement between the two experiments
suggests any distortions caused by randomization issues were modest.

8Note that the instruction set explicitly discussed the “new” button, and explained that “new” was in
fact the correct answer whenever the true label turned out to be different from any previously observed one.
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Figure 10 . A screenshot showing Experiment 3 in progress. The task on this trial is to
classify the object on the right. The response buttons allow the participant to assign the
object to one of the existing categories (i.e., “pas” or “foo”) or to guess that it represents a
“new” category whose label is not yet known.
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Figure 11 . Data from Experiment 3, showing the proportion of participants assigning the
test item to a novel category (left column), to the nearest old category (middle column), or to
one of the other categories (right column). The top row shows the classification probabilities
for the near test items, and the bottom row shows the corresponding probabilities for the far
test items. Within each panel, responses are plotted separately for each of the six category
structures.
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Results

The data of interest are people’s responses on the test items, plotted in Figure 11
for all 12 conditions. Almost invariably, participants assigned the test item either to a new
category (61% of responses) or to the nearest old category (category A was chosen on 34%
of occasions). The more distant categories (B, C and D) were chosen only on 5% of trials.
While unsurprising, the fact that people treated the test trial as a comparison between
category A and “new” places constraints on possible models.

It is clear that similarity information plays an important role in deciding whether to
assign the test item to a novel category. As one might expect, a novel object that is very
dissimilar to all old objects is more likely to be assigned to a novel category than a new
object that closely resembles a familiar one. That is, when deciding whether to assign a test
item to category A or a new category, people were more likely to select “new” for the far
test item (71%) than for the near one (47%). Using a Bayesian linear mixed effects model,
the Bayes factor indicates that the evidence for the effect is approximately 10101 to 1.

Moreover, similarity does override frequency in some instances. Increasing the number
of exemplars in the most distant category has very little influence on people’s willingness
to assign the novel object to that category: for instance, in the 31 condition category B has
three exemplars whereas in the 11 condition it has only one. The fact that all exemplars
of category B are very dissimilar to the test items (near or far) ensures that increasing the
frequency of category B has a very limited effect on people’s willingness to select it.

Frequency, however, does play a very strong role in people’s willingness to endorse
a novel category, and in a quite sophisticated way. The left hand side of Figure 11 shows
that increasing the frequency of category B does have a large effect, although this effect
has nothing to do with the endorsement of category B. Rather, the effect is to change the
relative willingness to choose category A instead of a novel category. This is a somewhat
curious variation of the familiar addition effect: consistent with Experiments 1 and 2, the
probability of a new category decreases across the sequence of conditions 11→21→31 and
111→211 relative to the probability of choosing category A, even though category A consists
of a single exemplar in every case. The Bayes factor for this effect is 10141 to 1.

Changes to the frequency table that affect the number of categories are a little more
complicated in this design. The sequences 31→211→1111 and 21→111 are constructed
by taking exemplars from (relatively nearby) category B and creating the somewhat more
distant categories C and D. Doing so has the effect of increasing people’s willingness to
assign test items to a novel category (Bayes factor: 1044 to 1). This effect is not surprising,
because the frequency distribution and similarity information are in agreement. Moving
exemplars in this fashion increases the number of categories (a distributional effect) but
also makes the training exemplars more distinct from the test item (a similarity effect).

A different test can be constructed by examining the sequences 11→111→1111 and
21→211 in which the number of exemplars and the number of categories increase. This is
broadly analogous to the novel addition effect discussed in connection with Experiments 1
and 2, though the analogy is closer for the 11→111→1111 sequence in which the locations
and category memberships of old objects do not change when the new object is added.
Curiously, although several models predict that the willingness to endorse a novel category
should increase across these sequences (discussed later) and this effect was observed in
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Figure 12 . Likelihood functions for all three categories in the 211 condition in Experiment
3. These likelihoods describe the learner’s beliefs about which stimulus features are most
likely to be generated when objects are sampled from each category, and depend on both
the training exemplars (shown at the bottom of the figure) and the learner’s priors about
category features. The parameters used to generate these plots are the same ones used to
fit the HG-CRP model (see Table 7). The probability distribution associated with the novel
category is denoted “new”, and is roughly uniform across the admissible range of stimulus
values (see main text).

previous experiments, it is attenuated to the point of absence in Experiment 3 with no
systematic effect being observable. Close inspection of Figure 11 suggests that the 11-near
condition is somewhat anomalous (Bayes factor of 25:1 favoring a model that includes a
specific term for the “11-near” condition) with people generalizing more readily in that
condition than would be expected on the basis of all the other results, but even if that
condition is excluded the evidence weakly favors a null effect (Bayes factor: 8:1) across
these sequences.

Novelty detection models that integrate similarity and frequency

The empirical results suggest that people integrate similarity information (based on
observable features) and distributional information (carried by the frequency table), and
do not rely solely on one or the other. Even a cursory inspection of Figure 11 reveals that
models that rely solely on the similarity between the nearest category and the test item
(e.g., SUSTAIN) will be unable to accommodate the empirical results because such models
should predict that all six frequency distributions produce the same results. Moreover,
because the nearest category always has the same frequency (i.e. n = 1), any successful
model must use the frequency information in a way that is more sophisticated than simply
weighting each old category by its observed frequency.
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Each of the six Bayesian models described earlier can be applied to supervised classi-
fication tasks in which the stimulus features are observable. To do so we need a likelihood
function that describes the probability that a stimulus would be observed with feature val-
ues xN+1 given that it comes from category k. For continuous valued features, we follow
Anderson (1991) and assume that each category produces a normal distribution.9 In this
approach each category is described in terms of the mean µ and variance σ2, though it
will be convenient to parameterize the variability of the category in terms of the precision
τ = 1/σ2. Given this specification, the learner places priors P (µ, τ) over the mean and
precision, and for each category infers the posterior distribution

P (µk, τk | xk) ∝ P (xk | µk, τk)P (µk, τk) (15)

where we use the notation xk to refer to the features of only those exemplars that belong
to category k.10 As discussed in the Appendix, we use standard normal-gamma priors over
the category distribution parameters. That is, the learner assumes that the precision τ is
drawn from a gamma distribution, and the mean µ is drawn from a normal distribution.
One nice property of this prior is that the learner’s beliefs can be characterized in terms of
four interpretable parameters:

• µ0 is the learner’s best a priori guess for the category mean µ
• τ0 is the learner’s best a priori guess for the category precision τ
• nµ is a pseudo-count indicating how much weight to place on µ0

• nτ is a pseudo-count indicating how much weight to place on τ0

In our applications we fixed µ0 = 60 to be the mean of the empirical observations and
nµ = .001. However, because the parameters τ0 and nτ have an important role to play in
specifying how widely the learner generalizes from a small sample, we treat these as free
parameters to be estimated.

Because the learner does not know the true parameters associated with the category,
the likelihood function for the featural information is given by the marginal probability,

P (xN+1 | lN+1 = k,x1:N , l1:N ) =
∫
P (xN+1 | µk, τk)P (µk, τk | xk) d(µk, τk) (16)

which in this instance corresponds to a t distribution and can be calculated analytically (see
Appendix). Our model adapts this integral by truncating the range of xN+1, ensuring that

9The model used here is not identical to Anderson’s model. Anderson (1991) draws a distinction between
categories (or clusters), which define a joint probability distribution over stimulus features, and category
labels, which are assumed merely to be an additional feature. Because of this distinction, it is possible under
some parameterizations for a single category label to map onto multiple categories, or in other instances for
a single category to be associated with multiple labels. However, as Anderson (1991) noted, many simple
experimental designs – such as those depicted in Figure 9 – tend to produce a one-to-one mapping between
labels and categories across a wide range of parameter values (see Griffiths et al., 2007). This does create
some ambiguity insofar as it is not always clear whether people are inferring novel categories or novel labels,
but it should be noted that Bayesian analyses that pertain to labels specifically (e.g., Vong et al., 2016) have
also tended to use the CRP prior for the label prediction problem.

10A more precise way to denote this would be xi|li=k, in order to be consistent with the previous notation
x1:N in which the subscript picks out the indices of the relevant exemplars. We hope that our intended
meaning will be clear from context.
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Table 7
Parameter values for the three non-hierarchical Bayesian models (top) and three hierarchi-
cal Bayesian models (bottom) when fit to the data from Experiment 3. For the similarity
component, the prior mean was fixed as µ0 = 60 and the weight attached to this mean was
fixed to be equivalent to nµ = .001 observations, reflecting a strong a priori assumption
that the locations of categories are unknown. The priors associated with the precision were
treated as free parameters, because these influence the width of generalization gradients in
each category.

Prior parameters Likelihood parameters
Model Strength θ Discount α Precision τ0 Weight nτ SSE
Uniform .95 .00 .29
CRP .21 .68 .52 .27
TTR .12 .36 .39 .23

G-CRP .058 .089 .32 .41 .22

Prior over θ Prior over α Likelihood
Model Shape ξ Scale σ β1 β2 Precision τ0 Weight nτ SSE
H-CRP .28 2.02 .015 4.47 .12
H-TTR 5.69 7.60 .02 5.60 .19
HG-CRP .73 1.61 .12 4.09 .016 6.27 .06

the likelihood function only assigns positive probability to feature values within a range that
would fit on the screen. For objects assigned to a “new” category, the marginal probability
is calculated by integrating over the prior P (µ, τ) rather than a posterior P (µ, τ |x). To give
a sense of how this model behaves, Figure 12 plots the likelihood function P (xN+1 | lN+1 =
k,x1:N , l1:N ) for all three old categories in the 211 condition, as well as the likelihood
function associated with a novel category.

As with previous experiments, we estimated model parameters using a simulated an-
nealing procedure to minimize sum squared errors between the model response probabilities
and the empirical ones. Data fitting was done at the level of specific responses (i.e., A, B,
C, D or “new”) and the best fitting parameter values and corresponding SSE values are
shown in Table 7. However, since the most interesting empirical results all pertain to the
probability of classifying the stimulus as “new”, Figure 13 plots the model predictions only
for those cases.

The importance of hierarchical priors

Figure 13 and Table 7 reveal that although none of the Bayesian models provides a
perfect account of the data, some perform worse than others. In particular, the three models
that rely on a non-hierarchical prior (CRP, TTR and G-CRP) all fail in a systematic way.
To illustrate this, consider what happens when additional objects are added to a distant
category, as exemplified by the 11→21→31 sequence. The empirical data indicate that this
substantially decreases the chance that the test item will be assigned to a new category, yet
all three of these models produce a null effect. The reason for this model failure stems from
the fact that empirically, human participants do not assign the new object to the (distant)
old category B regardless of whether it has one, two or three exemplars. A model using
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Figure 13 . Performance of the six Bayesian models when fit to the data from Experiment
3. All three non-hierarchical models fail to produce the same qualitative trends as human
participants. All three hierarchical models produce the correct qualitative trend, with HG-
CRP producing the best quantitative fit.

a G-CRP prior can reproduce that behavior through the likelihood function: the model
simply chooses parameter values that ensure all members of category B are so dissimilar
from the test item that the posterior probability of category B is still essentially zero even
when the prior probability is boosted by a factor of three.

However, if category B is constrained by the likelihood function to have posterior
probability near-zero, this means that the posterior distribution over categories is restricted
to a competition between category A and “new”. Because we can disregard category B
entirely, the predictions of the Bayesian model with the G-CRP prior can be computed by
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considering the posterior odds:

P (l = new | x,n)
P (l = A | x,n) = P (x | l = new)

P (x | l = A) ×
P (l = new | n)
P (l = A | n)

∝ P (l = new | n)
P (l = A | n)

= θ +Kα

1− α

where the second line follows because neither of the likelihoods P (x|l = new) and P (x|l = A)
change across conditions involving the same test item (i.e., near or far), and the third line
follows from the definition of the G-CRP. The final expression does not depend on the
frequency table n at all, indicating that the G-CRP model and its special cases predict a
null effect across the 11→21→31 sequence. (The reason that these models produce a very
attenuated version of the effect is that the empirical data allow a tiny amount of “wiggle
room” due to the fact that very occasionally human participants did select category B in
these conditions, but it is obvious from inspection that this does not allow the models to
produce an effect of an appropriate magnitude).

In contrast, consider the three hierarchical models, whose predictions are plotted on
the right of Figure 13. All three are able to produce stronger versions of the effect. Recall
from Equation 8 that the prior probability of a new category (or any other category for
that matter) is calculated by integrating out the posterior distribution P (θ, α | n), where
the frequency table n captures information about the base rates of category A and category
B. Given that the 31 table gives rise to a different posterior distribution than the 21 table
(e.g., Figures 4 and 5), the prior odds for “A versus new” will not be the same in these
two conditions. Put more simply, the hierarchical structure of the H-CRP, H-TTR and
HG-CRP models ensures that information about the frequency of category B “leaks over”
and can influence the relative probability of category A versus a new category in non-trivial
ways. This structure is what allows the hierarchical models to perform better than their
non-hierarchical counterparts in Figure 13.

Other categorization models

Although we have focused mainly on our six Bayesian models, the data from Ex-
periment 3 pose a challenge to many alternative approaches. One simple alternative is a
Bayesian model that uses the same likelihood function as six models in Figure 13 but com-
pletely neglects frequency information by placing a uniform prior over all possible responses.
As Figure 14 shows, this uniform model performs worse than all of the six Bayesian models
evaluated already.

As discussed earlier, models such as SUSTAIN that rely on the similarity between the
novel object and the nearest category cannot accommodate any of the differences among
the six different frequency conditions. Figure 14 shows that the simplicity model performs
somewhat better, but still falls short of the performance of the hierarchical Bayesian models.
Like the hierarchical Bayesian models, the simplicity model correctly predicts the effect of
adding exemplars to distant categories in the 11→21→31 sequence, but it only does so
for the near test item. It fails to predict that transferring an exemplar to a new (and
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Figure 14 . Additional model fits to the data from Experiment 3, showing the performance of
a Bayesian model with a uniform prior placed over the possible responses, and the simplicity
model.

more distant) category as in the 31→211→1111 sequence increases the probability of a
novel category. The three non-hierarchical Bayesian models (CRP, TTR, G-CRP) also fail
to capture this effect, but all three hierarchical Bayesian accounts (H-CRP, H-TTR, HG-
CRP) successfully do so. The simplicity model also produces a poorer quantitative fit than
the hierarchical Bayesian models shown on the right hand side of Figure 13.

In short, although none of the categorization models we consider perfectly captures
the results from Experiment 3, the only approaches that perform passably well are the
Bayesian models that rely on a hierarchical prior. All of the Bayesian models are able to
learn base rates of individual categories, but the key property of the hierarchical models is
that they also learn parameters (i.e., α and θ) that characterize the shape of the frequency
distribution in general terms. Our results therefore suggest that people’s responses are also
based in part on inferences about the shape of the underlying frequency distribution.

Experiment 4

Experiment 3 suggests that people are sensitive to distributional information when
estimating the prior P (lN+1|l1:N ), using this information in a manner consistent with hi-
erarchical Bayesian models, and moreover that this distributional knowledge is integrated
with similarity information. Nevertheless, the evidence for this integration is a little difficult
to interpret because it does not perfectly disentangle frequency information from similar-
ity information. For instance, although the category structures in Experiment 3 kept the
locations of the two nearest training exemplars constant across conditions (see Figure 9)
and kept the spacing between the nearest neighbours within adjacent categories constant,
the within-category variability and the range spanned by the exemplars was different as a
function of the frequency table. It is possible that these differences might have been re-
sponsible for the effects that we observed. Adjusting the spacing of exemplars in other ways
produces similar issues, suggesting that a different approach is required. In Experiment 4
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Figure 15 . The stimuli used in Experiment 4 consisted of the 12 stimulus sets from Exper-
iment 3 (see Figure 8) and the additional 24 stimulus sets shown above.

we partially address this problem by introducing a censoring process to the experimental
design: participants in a 31 condition might be told that three wugs and one dax have been
encountered, but images are only available for the dax. This allows the learner to make use
of the entire frequency table, but only the similarities between the dax and the test item are
available. Although censoring leads to a somewhat contrived design, this approach creates
the separation between frequency information and similarity that is required.

Method

Participants. The study was completed by 400 workers on Amazon Mechanical
Turk, who were paid US$1.70 for their time (approximately 10 minutes). Data were not
received or not recorded correctly for 6 participants. Among the remaining 394 participants,
384 participants were located in the United States, 6 in India and 4 elsewhere. 227 self
identified as male, 165 as female and 2 responded other.
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Materials & Procedure. Experiment 4 was identical to Experiment 3 with the
following changes. There were 36 experimental conditions, manipulated within subject and
presented in a random order. To avoid participants being exposed to the same stimulus set
twice, we generated an additional 24 set of unidimensional stimuli shown in Figure 15. As
before, the assignment of stimulus set to experimental condition was randomized. Twelve of
our conditions were exact replications of Experiment 3 (i.e., no censoring), and were included
for calibration purposes only: the probabilities of responding “new” in these 12 conditions
were strongly correlated (r = 0.93, p < .0001) with the results from Experiment 3, indicating
that the results replicated. These conditions are not analysed further. Two additional
conditions were included using a 22 frequency table with no censoring applied (one with a
near test item and one with a far test item) to satisfy counterbalancing constraints, but are
of little direct interest and are not analyzed.

The conditions of interest are the 22 “censored” conditions, using all 11 frequency
tables that can be constructed from four exemplars or fewer. In the censored conditions,
participants were shown the category labels for all training exemplars, but only one exemplar
was depicted on screen. An illustration of this is shown in Figure 16, which shows a 211
frequency table: the participant has encountered two Hei exemplars, one Wri exemplar
and one Ael exemplar, but the images for all exemplars except the Ael item are missing
(depicted as grey question marks). We denote this condition as 211∗ where the asterisk
indicates the category to which the uncensored exemplar belongs (i.e., the final one). The
nature of the censoring process was explained to participants in the instructions to ensure
that they recognized that the question marks denoted a missing item and was not in fact
the stimulus itself. Moreover, the rationale for the censoring was explicitly described to
participants using the following text,

There’s one additional detail to this task. In real life, we often learn about
things we have never actually observed (e.g., you might know that Vienna is a
real city even if you have never been there and don’t know much about it).

accompanied by a visual illustration of the interface indicating how the grey question marks
should be interpreted. All participants correctly passed an instruction check question on this
topic. Using the notation described above, the 11 frequency conditions are 1∗, 11∗, 111∗,
1111∗, 2∗, 21∗, 211∗, 22∗, 3∗, 31∗ and 4∗, where the table denoted 4∗ implies that there are
four exemplars that all belong to the same category, but only a single one is observed. The
set of 22 censored conditions was produced by fully crossing the frequency conditions with
two similarity conditions, one where the test item was near to the sole uncensored training
item, and another in which it was far from the training item. Consistent with the design
used in Experiment 3 (see Figure 9) the training item was always located at “75” on the
scales shown in Figures 8 and 15, the near test item was located at “85”, and the far test
item was located at “95”.

Results & Discussion

The effect of exemplar similarity is unambiguous: the near test item is more likely
than the far test item to be assigned to the same category as the observed exemplar (Bayes
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Figure 16 . An example of a censored stimulus set, showing a 211∗ frequency table and a near
test item. To solve this categorization problem the learner has to integrate the information
about the frequency table (e.g., two exemplars from the Hei category have been observed,
as opposed to only a single exemplar from the Ael category), with the known similarity
between the single observed Ael exemplar and the test item. Other relevant similarity
information is missing because the remaining three exemplars have been censored.

factor approximately 1048).11 As one might expect, participants are sensitive to similarity
information. To study the effect of frequency information, we again organize the results by
considering sequences of conditions corresponding to familiar additions and novel additions.
For the familiar addition effect there are three relevant sequences. In the 1∗→2∗→3∗→4∗

sequence, the added exemplar is assigned to the observed category (i.e., the category to which
the sole observed training exemplar belongs). In contrast, the 11∗→21∗→31∗ sequence and
the 111∗→211∗ sequence both add the exemplar to one of the other old categories. As
Figure 17 illustrates, all sequences display the same pattern of results found in Experiment
1-3. As predicted by all of the CRP-based models, adding an exemplar to a familiar category
makes people less likely to assign the test item to a novel category (top row), and more
likely to assign it to the observed category (middle row), with a Bayes factor for this effect
of approximately 1019. This pattern is observed even when the familiar addition does not
itself belong to the observed category and even though no similarity information is available
to drive the effect, suggesting that effect is due to the way people form prior expectations
P (lN+1|l1:N ) based on the observed frequency table.

For the novel addition effect there are two distinct sequences, 1∗→11∗→111∗→1111∗

and 21∗→211∗.12 The choice probabilities for these conditions are displayed in Figure 18
and it is clear from inspection that the pattern of results is complicated. To make sense of
the results, it is helpful to note that if we ignore the 1∗ condition for the moment, there is
strong evidence for the usual novel addition effect. The probability of assigning the test item
to a novel category increases from 21∗→211∗ and from 11∗→111∗→1111∗ (Bayes factor of
approximately 2000:1), though the magnitude of the effect is modest. For these conditions

11As with previous experiments, all Bayes factors are computed using a linear mixed model, and where
specific effects are tested by comparing a model that includes the effect against one that does not. All other
relevant terms (including a random effect of subject) are included in both models. For reasons discussed
below, data from the 1∗ condition were not included in these analyses.

12One might also consider including 2∗→22∗, but this is not a pure novel addition effect as it entails both
a novel addition and a familiar addition.
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Figure 17 . The familiar addition effect in Experiment 4 is analogous to previous experi-
ments: adding a new exemplar to a previously observed category decreases the probability
that a test item will be assigned to a novel category.
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Figure 18 . The novel addition effect in Experiment 4. The pattern of categorization judg-
ments in this case is complicated (see main text for details).
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(a) Familiar Addition (b) Novel Addition
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Figure 19 . Model predictions for Experiment 4, using the parameter values estimated for
Experiment 3. Data from the 1∗ condition are not included in this plot.

the results are in line with Experiments 1-2 suggesting that the novel addition effect works
in the opposite direction to the familiar addition effect. As noted above, we find this effect
even though similarity information is held constant across the different frequency tables.

To see how well the various models perform at capturing these effects, Figure 19
plots the predictions of all seven Bayesian models and the simplicity model against the
human data, using the parameter values estimated from the Experiment 3 data. As this
figure illustrates, none of the models performs perfectly, but there are clear differences. All
models can capture the qualitative familiar addition effect, except the Bayesian model with
a uniform prior. The simplicity model and the three hierarchical Bayesian models produce
the correct novel addition effect. All models except the simplicity model are more willing
to infer a novel category for the far test item than for the near test item.13 In short, the

13To some extent this is an unfair test of the simplicity model, which uses the ordering of pairwise
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three hierarchical Bayesian models capture the key effects, but all other models fail on one
of the qualitative desiderata.

The one result in Experiment 4 not easily explained with any of the models in our
framework is the unexpected behavior of participants in the 1∗ condition. Relative to the
other conditions shown in Figures 17 and 18, participants were disproportionately more
likely to assign the test item to a new category in this condition. This effect is especially
striking in Figure 18 but is also evident in Figure 17, particularly for the near test item
(left panel). It is difficult to say with any certainty why this happens, but one plausible
explanation is that this condition produces a demand effect: much more than any other
condition in the experiment, the judgment in the 1∗ condition resembles an identification
judgment more than a categorization task. Not only are there only two stimuli on screen,
there are no censored cases to “remind” people that there are other categories and other
objects that need to be considered. It seems reasonable to think that under these circum-
stances people will feel more inclined than they otherwise might to pragmatically infer that
the experimenter is asking for a perceptual discrimination judgment, inflating the proba-
bility of choosing “new” (Nosofsky, 1986). Given that the experiment was not designed to
test this possibility this explanation is somewhat speculative, but if true it suggests a role
for the full version of Zabell’s (2011) model which contains an additional parameter that
pertains specifically to the situation when all observations belong to the same category.
Indeed, given that the analogous condition in Experiment 1 was also rather difficult for the
models to capture (see Figure 3), it does seem likely that there is something unusual about
this particular case.

The peculiarity of the 1∗ condition notwithstanding, the pattern of results from Ex-
periment 4 is broadly consistent with previous results. Familiar addition decreases the
probability of detecting a novel category and novel addition increases this probability. Im-
portantly, these effects are observed even when changes to the frequency table do not affect
the available similarity information, and even though people are sensitive to the similarity
information that is present: as before, people are more willing to postulate a novel category
for the far test item than for the near one. Taken as a whole, these findings are consistent
with the hierarchical Bayesian models but not with the other models we have considered.

General Discussion

We considered the problem of novelty detection, which requires a learner to decide
whether an object belongs to a category that has never previously been encountered. We
presented a Bayesian framework for novelty detection, and introduced six specific Bayesian
models that make different commitments about the way in which the distribution of objects
among categories influences expectations about the category assignment of the next object
to be observed. The first model (CRP) is closely related to Anderson’s rational model of
categorization, and the remaining models differ in two key respects from the CRP. First,
some of these models include a discount parameter that captures the intuition that the
probability of a new category depends in part on the number of categories already observed.

similarities to capture the effect of similarity on categorization. Because each categorization problem only
includes a single pair of observed stimuli, none of our conditions has any rank order information for the
model to exploit and accordingly the model cannot produce an effect of similarity. An extension of the
simplicity model that used the raw similarity information would very likely be able to produce the effect.
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Second, some of these models incorporate a hierarchical learning mechanism that allows
parameters like the discount parameter to be learned from experience.

Experiments 1 and 2 directly probed people’s prior expectations about the next object
by asking about this object before it had been observed. The results were inconsistent
with the CRP prior assumed by Anderson’s RMC, and were best explained by the two
models (H-TTR and HG-CRP) that incorporate both a discount parameter and hierarchical
learning. Experiments 3 and 4 used a more traditional categorization task, and asked
people to categorize a new object after this object had been observed. The results were
again inconsistent with the CRP, and were best explained by the models that incorporate
hierarchical learning. Summary plots illustrating the overall pattern of results are shown
in Figure 20, and demonstrate that the quantitative performance of all three hierarchical
Bayesian models is consistently better than the other approaches.

Many models of categorization do not allow for novel categories, but Anderson’s RMC,
the simplicity model, and SUSTAIN are three notable exceptions. We discussed all three
and argued that none of them accounts for our data as well as the H-TTR and the HG-CRP.
We also evaluated a family of simple heuristics and found that none of them performed very
well. Our results therefore place strong constraints on theories of novelty detection, and
suggest that a hierarchical Bayesian approach provides a particularly promising way to
explain how people reason about novel categories.

Novelty detection

The problem of novelty detection lies outside the mainstream of research on catego-
rization, but is related to a number of research directions in the categorization literature
and beyond. As suggested already, one of the closest connections is to work on unsuper-
vised categorization. In a typical unsupervised problem, a learner is presented with a set of
objects, but does not know how many different categories are represented in the set. The
novelty detection task in Experiment 3 is closely related to the problem of inferring the
total number of categories observed thus far. A second connection is to the literature on
learning categories from positive examples (Feldman, 1997; Xu & Tenenbaum, 2007). In
a typical problem of this kind, a learner is presented with several instances of a category,
then asked to decide whether a subsequent object belongs to the same category. This task
can be interpreted as a novelty detection problem in which the learner must decide whether
or not the subsequent object belongs to a novel category.

Beyond the categorization literature, novelty detection is related to work on recogni-
tion memory (Malmberg, 2008). A typical task might present participants with a number
of objects, then ask them to decide whether a subsequent object is old (previously observed)
or new (never previously observed). Models of recognition memory are not directly rele-
vant to the novelty detection problem as we have framed it because they focus on old-new
judgments about individual objects, whereas we are interested in categorization decisions.
Nevertheless as work by Nosofsky (1991b) illustrates, it is possible to switch between these
two tasks with a single framework. Our previous discussion of the GCM and its variants
suggests that a simple exemplar based approach will not account for our findings, but other
recognition memory models such as REM (Shiffrin & Steyvers, 1997) or BCDMEM (Dennis
& Humphreys, 2001) may provide a more productive basis for exploring the connections
between these two versions of the novelty detection problem.
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Figure 20 . Data and model behavior for all four experiments and the seven Bayesian models.
Each panel shows a scatterplot with human data on the x-axis and the model behavior on
the y-axis. For Experiments 1-3, the model parameters were estimated from the data,
whereas Experiment 4 plots a parameter-free prediction with all model parameters fixed at
the values estimated from Experiment 3. For Experiments 3 and 4 there are separate data
points corresponding to the probability of detecting a novel category and the probability
of assigning the test item to the nearest familiar category (these are largely independent
because participants usually had the option of assigning the test item to a different familiar
category). The Pearson correlation is reported in each panel.
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In addition to developing behavioral tests of novelty detection, researchers have stud-
ied the biological basis of novelty detection in humans and other animals (Marsland, 2003).
Dishabituation is one well-known phenomenon that lends itself to study across organ-
isms (Thompson & Spencer, 1966). When a stimulus is presented repeatedly, an animal
will often habituate and generate smaller responses over time. If a series of similar stimuli
is followed by a stimulus that is very different, the animal will dishabituate and generate a
large response. Animals show stimulus generalization to some novel stimuli but dishabit-
uate to others, and dishabituation can therefore be interpreted as the detection of a novel
category.

A final connection is to the statistical literature on outlier detection (Hodge & Austin,
2004). When interpreting a set of data, psychologists (and other researchers) may be in-
clined to set aside certain observations as anomalous. A judgment of this kind can be viewed
as the inference that the observations in question belong to a novel category. Statisticians
have developed formal methods of outlier detection, but we are aware of few attempts to
compare these methods to human inferences.

Although novelty detection has previously been approached from a variety of per-
spectives, the approaches mentioned in this section tend to focus on similarity or featural
information. The key problem addressed by these approaches is deciding whether the fea-
tures of a new object are unfamiliar enough to warrant assigning the object to a novel
category. In contrast, we have focused on the way in which novelty detection is influenced
by the distribution of previously observed objects among categories. Experiments 3 and 4
suggested that featural information and distributional information are both important, and
these two factors are captured respectively by the likelihood and the prior in Equation 1.

Algorithmic accounts of novelty detection

The Bayesian models presented in this paper represent a computational-level account
of how people solve the novelty detection problem. That is, they are posed in terms of an
in-principle solution to a learning problem, in this case a categorization problem. Given
a set of objects with observed features and known labels, how should this new object be
classified? Each of the Bayesian models gives a different answer because each one for-
mulates the categorization problem differently, but in each case the model describes the
solution to a learning problem and does not describe any specific algorithm for producing
or approximating these solutions.

One way to develop algorithmic accounts of novelty detection is suggested by Sanborn
et al. (2010), who proposed a simple algorithm that implements approximate inference
for Anderson’s (1991) original rational model. Taking its cue from statistical methods for
sequential importance sampling (see, e.g., Smith, Doucet, de Freitas, & Gordon, 2013), their
particle filtering algorithm produces a set of category assignments by maintaining a small
number of hypotheses (particles) about the categorization scheme. Figure 21a illustrates
the algorithm schematically. As new observations arrive, each hypothesis is updated to
accommodate the new data, and those hypotheses that provide a better account of the data
at time t are more likely to be retained at time t+1. Although a formal account of Sanborn
et al.’s (2010) approach is beyond the scope of this paper, the key feature of this algorithm
is that it approximates the full Bayesian solution by retaining a small set of hypotheses that
“track” the posterior distribution over all hypotheses. If the learner only maintains a small
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particle 1

particle 2

particle 3

α = .25

α = .50

α = .75

(a) Particle filter for the RMC (with CRP prior)

(b) Particle filter for the RMC with H-TTR prior

particle 3

Figure 21 . Schematic illustration of the particle filtering algorithm used by Sanborn et al.
(2010) (panel a), and an extension of this scheme (panel b) that would be applicable to a
model that employed a hierarchical prior (in this case the H-TTR model). In this example,
the learner observes a sequence of four observations: large circle, large triangle, large star,
small circle, and the learner’s hypotheses are updated when new observations arrive (from
left to right). See main text for more detail.

number of hypotheses the approach is not computationally expensive, although the quality
of the approximation is inversely related to the number of hypotheses maintained.

Because the original RMC implicitly relies on a CRP prior, adapting the particle
filtering algorithm to a TTR or G-CRP model is straightforward. Equation 8 in Sanborn
et al. (2010) describes a CRP prior: replacing that formula with the corresponding formula
for the G-CRP model (our Equations 6 and 7) produces a particle filtering algorithm for a
G-CRP variant of Anderson’s model. The most appealing way to handle the hierarchical
models is to repeat the particle filtering trick: in addition to maintaining a set of particles
that represent hypotheses about the specific categorization scheme, the learner also keeps
a small set of particles that capture the hypotheses that the learner has about α and/or θ.
Figure 21b illustrates this approach schematically. A model of this form is somewhat more
complicated than the original scheme from Sanborn et al. (2010) because it has to keep
track of two different kinds of latent variables (categorization scheme and distributional
hypotheses). An interesting direction for future work is to examine what kind of particle
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filtering algorithm (or other algorithm) best captures human performance in our tasks. Here,
however, we limit ourselves to the observation that the existing categorization literature
provides a number of clues about how psychologically plausible implementations of our
models could be constructed.

Infinite models vs mixtures of finite models

The six Bayesian approaches evaluated in this paper reason about a set of categories
that is countably infinite, and can therefore be described as “infinite models.” An alternative
is to assume that the number of categories is fixed but unknown, and to place a prior over
the number of categories. Models of this kind are sometimes called “mixtures of finite
models” (MFMs), and have been explored in a psychological context by Kemp, Jern, and
Xu (2009) and Navarro (2013).

The relative merits of infinite models and MFMs have been discussed by a number of
statisticians and machine learning researchers (Welling, 2006; Wallach, Jensen, Dicker, &
Heller, 2010; Miller & Harrison, in press). One advantage of MFMs is that they are flexible
enough to incorporate many different kinds of prior expectations. In contrast, models like
the CRP and the G-CRP make fairly strong assumptions about the number of categories
that is expected to be encountered given a sample of objects, and the shape of the frequency
distribution over these categories. For example, as the number of objects sampled (N)
increases, the CRP assumes that the expected number of categories in the sample grows as
log(N) (Arratia, Barbour, & Tavaré, 2003). In addition, the CRP implicitly expects that
the frequency distribution over a sample will be skewed, and that the sample will contain a
small number of large categories and a large number of small categories. Assumptions like
these will not be appropriate if the total number of categories is expected to be small, or if
categories are expected to be roughly equal in size.

For the purposes of the initial explorations reported here, we chose to restrict our
discussion to CRP-based models for reasons of parsimony: they are more constrained and
hence required fewer substantive choices to be made by the researcher. However, we sus-
pect that the more flexible MFM framework may turn out to be necessary to account for
human judgments in more general settings. As an example, our experiments used a cover
story involving species of insects, and our results suggest that the assumptions of models
like the HG-CRP provide a reasonable match for people’s expectations about this setting.
Future studies can explore other cover stories that may evoke different prior expectations
and qualitatively different patterns of behavior. For example, Experiments 1 and 2 found
support for the novel addition effect in Figure 1b, but if the total number of categories is
expected to be small, the effect may be reversed. In this case, each novel addition “uses up”
one of the few novel categories that have not yet been observed, and therefore lowers the
probability that subsequent objects will belong to a novel category. This pattern of results
would not be expected under any of the CRP-based models that we have considered.

A second advantage of MFMs is that they can handle questions that are not easily
addressed by infinite models. For example, after observing chocolates sampled from a box,
a learner might be asked to estimate the total number of different categories represented
within the box. Questions of this kind are readily answered by people (Kemp et al., 2009;
Navarro, 2013) and by MFMs, which can compute a posterior distribution over the total
number of categories. In contrast, questions about the total number of categories are more
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difficult to address using infinite models which assume that the true population consists of
an infinite number of exemplars divided among an infinite number of categories.

To illustrate how this becomes problematic, consider how one might try to render the
question of population size sensible with the help of an infinite model. To do so, we assume
that every finite population consists of a finite number N∗ of exemplars generated using the
G-CRP (or similar), and that only K∗ categories are represented among them. A learner
who sees a subset that consists of N exemplars divided among K categories and knows
that the “full” population has N∗ members can use the formal structure of the G-CRP
to construct the posterior distribution P (K∗ | K,N,N∗) and thus draw inferences about
the number of categories represented in the finite population: the relevant mathematics is
provided by Favaro et al. (2009). Some situations seem naturally amenable to this kind of
analysis: the current population of Sydney consists of a finite set of N∗ people, but it does
not seem unreasonable to suggest that the set of potential Sydneysiders consists of an infinite
number of possible humans from which the current population has been sampled. Among
an infinite number of people there could plausibly be an infinite number of job titles. If one
accepts this, using an infinite model to make inferences about the number of occupations
that exist in Sydney seems reasonable. On the other hand, if we were to sort Sydneysiders
(real or hypothetical) into categories based on the number of limbs they possess, an infinite
model now seems very unreasonable indeed: if one is unwilling to countenance the idea of
an infinite-limbed person, there must exist a finite upper bound on the number of possible
categories, and a CRP style model makes very little sense. More prosaically, it seems to
us that one should not require the mathematics associated with infinite sets to guess the
number of chocolates in a box.

As this discussion highlights, there are a number of reasons to consider adopting the
MFM approach. Even so, we believe that infinite models provide a useful starting point
for psychological work on novelty detection. As discussed earlier, the six models evaluated
in this paper are based on three qualitative assumptions laid out by Zabell (2011). These
assumptions will not hold in all cases, but they are conceptually simple and we believe
that an exploration of these assumptions provides a useful starting point for empirical and
theoretical work.

Beyond frequency and similarity information

In our experiments, people were able to use frequency information and similarity
information to form expectations about novel categories. Future work can explore other
kinds of information that support inferences about novel categories. In some settings,
learners may believe that the categories that they have observed exhaust the set of possible
categories, and may therefore infer that novel categories are unlikely to be encountered.
For instance, Hahn and Oaksford (2007) argue that when a representation can safely be
assumed to be complete (or nearly so) then an argument from ignorance is rational. If asked
“does the Belair train stop at Millswood?” it is entirely appropriate to respond “no, it’s
not listed on the Belair timetable”, because the set of labels listed in a train timetable is
presumed to be complete. In contrast, if one is asked “is there a train station at Millswood”,
it is a fallacy to respond “no, it’s not listed on the Belair timetable” because one presumes
that the stations on the Belair line would be only a partial listing of the set of possible
stations in town.
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Theoretical knowledge can also support inferences about novel categories. Mendeleev
developed a theory that captured systematic relationships between the chemical elements,
and used this theory to make accurate predictions about the existence and the properties of
several elements that had not yet been observed. Particle physicists have used their theories
to predict the existence and properties of a number of subatomic particles, including the
Higgs Boson, which was postulated in the 1960s and first observed in 2012. Analogous
inferences may also be supported by folk theories (Gopnik & Meltzoff, 1997). For example,
a jungle dweller who traps a new kind of marsupial that happens to be female may infer that
male forms of the animal also exist despite never having observed them (Taylor, 1990). Our
experiments deliberately used a very simple paradigm, but future work on novelty detection
can aim to develop experimental paradigms that draw on richer sources of background
knowledge.

Conclusion

Much of the categorization literature focuses on how people assign objects to familiar
categories, but we explored the problem of deciding whether an object is the first exemplar
of a novel category. We began with three simple axioms provided by Zabell (2011) and
used them to generate six distinct Bayesian models of novelty detection. Across three
experiments we found consistent evidence that human reasoning does not match the CRP
prior commonly adopted by Bayesian models, nor is it consistent with a simple “compare
to threshold” approach used by a variety of non-Bayesian models. We found, however, that
human inferences were accurately predicted by two of our Bayesian models: the H-TTR and
the HG-CRP. Both models capture the intuition that the probability of a novel category
depends in part on the number of categories already observed, and both incorporate a
hierarchical learning mechanism.

Like many other studies of categorization, our experiments focused on learning over
relatively short time scales. The importance of novelty detection, however, becomes clear-
est when considering learning over the course of a lifetime. Consider the set of concepts
possessed by a typical adult, and subtract from this set all concepts possessed by a typical
newborn. Every concept that remains must have been novel at some stage, and character-
izing the cognitive abilities that allow these concepts to be introduced is a major challenge.
Our work addresses one small piece of the puzzle, and suggests that tracking distributional
information is one of the abilities that allow novel categories to be detected.
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Appendix

Proof that the H-CRP model cannot produce a transfer effect

Under the CRP with parameter θ, the probability that N objects are partitioned into
K types such that type k has frequency nk is given by the exchangeable partition probability
function (see Sanborn et al., 2010)

P (n1, . . . , nK |θ) = θK
Γ(θ)

∏
k Γ(nk)

Γ(θ +N) ,

and the conditional probability that the next object belongs to existing type k is

P (type k|θ) = nk
θ +N

.

For a novel type we obtain

P (new type|θ) = θ

θ +N
.

The H-CRP model extends this model by placing a prior P (θ) over the strength parameter
and assuming that the learner uses the observed frequency table to infer a posterior over
θ. Predictions about new types arise from integrating over this posterior. The posterior
distribution over θ given the frequency table n is

P (θ|n1, . . . , nK) ∝ θK Γ(θ)
Γ(θ +N)P (θ).

Thus the probability that the next object belongs to a novel type is

P (new type|n1, . . . , nK) ∝
∫ ∞

0

θ

θ +N
θK

Γ(θ)
Γ(θ +N)P (θ)dθ.

This expression depends on N and K but is otherwise independent of nk.
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Specification of the normal-gamma prior

The Bayesian models in Experiment 3 apply a slightly reparameterized version of the
category likelihood function suggested by Anderson (1991). The probability distribution
over a feature x associated with a specific category is assumed to be normal with unknown
mean µ and unknown variance σ2. We reparameterize the variance as the precision τ =
1/σ2, giving

x | µ, τ ∼ Normal(µ, 1/τ),

and specify the following model for µ and τ :

τ | α, β ∼ Gamma(α, β)
µ | τ, φ, λ ∼ Normal(φ, 1/(τλ))

This joint distribution over (µ, τ) is referred to as the normal-gamma distribution, and has
density

p(µ, τ |µ0, λ, α, β) = βα
√
λ

Γ(α)
√

2π
τα−

1
2 exp

(
−βτ − λτ(µ− µ0)2

2

)
.

The learner’s prior over categories is specified via the following parameters:

• µ0 is the prior mean and is given by µ0 = φ
• τ0 is the prior precision and is given by τ0 = α/β
• nµ counts the number of pseudo-observations that contribute to the prior mean, given
by nµ = λ
• nτ counts the number of pseudo-observations that contribute to the prior precision,
given by nτ = 2α

Thus the specific prior is denoted

µ, τ ∼ NormalGamma
(
µ0, nµ,

nτ
2 ,

nτ
2τ0

)
.

The normal-gamma prior is conjugate to the normal distribution, which means that if the
prior distribution P (µ, τ) is normal-gamma, so too is the posterior distribution P (µ, τ |x).
Specifically, if the learner observes a set of n observations from the category that have
mean x̄ and standard deviation s, the posterior is also normal-gamma, but with updated
parameters,

µ, τ | x ∼ NormalGamma
(
φ′, λ′, α′, β′

)
where

φ′ = nµµ0 + nx̄

nµ + n

λ′ = nµ + n

α′ = nτ + n

2

β′ = 1
2

(
nτ
τ0

+ ns+ nµn(x̄− µ0)2

nµ + n

)
.
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Note that if the learner’s beliefs about the unknown category parameters (µ, τ) are described
by a normal-gamma prior with parameters (φ, λ, α, β), then the marginal distribution over
a feature value x drawn from the category is given by a three-parameter Student’s t distri-
bution with (ν, µ, σ2) = (2α, φ, β/(λα)) and

p(x|ν, µ, σ2) = Γ((ν + 1)/2)
Γ(ν/2)

√
πνσ

(
1 + 1

ν

(
x− µ
σ

)2
)−(ν+1)/2

The simplicity model

As mentioned in the text, accounts of unsupervised categorization can typically be
formulated in terms of a function g(·) that scores the goodness of a system of categories.
The simplicity model proposes that the goodness of a system is inversely related to the
length of that system’s description. Pothos and Chater (2002) use a scheme in which the
description length L of a system is a combination of three components:

L = cost to specify clusters + cost to correct errors + number of free inequalities (17)

and specify formally how each component can be calculated. Our implementation follows
Pothos and Chater (2002) in most respects, but our definition of the second component
(cost to correct errors) is based on the improved formulation given by Hines, Pothos, and
Chater (2007). Given the description length L of a system of categories, we define the
goodness of the system as 2−L.

Experiments 1 and 2 ask people to reason about a new object that has not yet been
observed. We applied the simplicity model to these experiments by considering different
ways in which an observed system could be extended by adding a new object. Because
nothing is known about the similarity relationships between the new object and the objects
already observed, we did not include these relationships when computing the description
lengths of the extended systems. As a result, these description lengths differ with respect
to the first component in Equation 17 (cost to specify clusters) but not with respect to the
second and third components.

In Experiments 3 and 4, participants are asked to reason about a new object that
has been observed. We again considered all ways in which an observed system could be
extended by adding the new object, and used Equation 14 to compute the probability
of each category assignment. For Experiment 3, similarity relationships between the new
object and previously observed objects are known, and are included when computing the
description lengths of the extended systems. For Experiment 4, the censoring manipulation
means that the model is unable to take similarity into account.


