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Abstract

We describe a nonparametric Bayesian approach to generalizing from
few labeled examples, guided by a larger set of unlabeled objects and
the assumption of a latent tree-structure to the domain. The tree (or a
distribution over trees) may be inferred using the unlabeled data. A prior
over concepts generated by a mutation process on the inferred tree(s)
allows efficient computation of the optimal Bayesian classification func-
tion from the labeled examples. We test our approach on eight real-world
datasets.

1 Introduction

People have remarkable abilities to learn concepts from very limited data, often just one
or a few labeled examples per class. Algorithms for semi-supervised learning try to match
this ability by extracting strong inductive biases from a much larger sample of unlabeled
data. A general strategy is to assume some latent structure T that underlies both the label
vector Y to be learned and the observed features X of the full data (unlabeled and labeled;
see Figure 1). The unlabeled data can be used to help identify the latent structure T , and an
assumption that Y is somehow “smooth” with respect to T – or in Bayesian terms, can be
assigned a strong prior conditional on T – provides the inductive bias needed to estimate
Y successfully from very few labeled examples Yobs.

Different existing approaches can be understood within this framework. The closest to
our current work is [1] and its cousins [2-5]. The structure T is assumed to be a low-
dimensional manifold, whose topology is approximated by a sparse neighborhood graph
defined over the data points (based on Euclidean distance between feature vectors in the X
matrix). The label vector Y is assumed to be smooth with respect to T ; [1] implements this
smoothness assumption by defining a Gaussian field over all complete labelings Y of the
neighborhood graph that expects neighbors to have the same label. This approach performs
well in classifying data with a natural manifold structure, e.g., handwritten digits.

The graphical model in Figure 1 suggests a more general strategy for exploiting other kinds
of latent structure T , not just low-dimensional manifolds. In particular, trees arise promi-
nently in both natural and human-generated domains (e.g., in biology, language and in-
formation retrieval). Here we describe an approach to semi-supervised learning based on
mapping the data onto the leaf nodes of a rooted (and typically ultrametric) tree T .

The label vector Y is generated from a stochastic mutation process operating over branches
of T . Tree T can be inferred from unlabeled data using either bottom-up methods (agglom-
erative clustering) or more complex probabilistic methods. The mutation process defines
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T Figure 1: A general approach to semi-supervised
learning. X is an observed object-feature matrix,
Y the hidden vector of true labels for these ob-
jects and Yobs a sparse vector of observed labels.
The unlabeled data in X assist in inferring Y by
allowing us to infer some latent structure T that
is assumed to generate both X and Y .

a prior over all possible labelings of the unlabeled data, favoring those that maximize a
tree-specific notion of “smoothness”. Figure 2 illustrates this Tree-Based Bayes (TBB)
approach. Each of the 32 objects in this dataset has two continuous features (x and y coor-
dinates); X is a 32-by-2 matrix. Yobs contains four entries, two positive and two negative.
The shading in part (b) represents a probabilistic inference about Y : the darker an object’s
node in the tree, the more likely that its label is positive.

TBB classifies unlabeled data by integrating over all possible labelings of the domain that
are consistent with the observed labels Yobs, and is thus an instance of optimal Bayesian
concept learning [6]. Typically, optimal Bayes is of theoretical interest only [7], because
the sum over labelings is in general intractable and it is difficult to specify sufficiently
powerful and noise-resistant priors for real-world domains. Here, a prior defined in terms
of a tree-based mutation process makes the approach efficient and empirically successful.

The next section describes TBB, as well as a simple heuristic method, Tree Nearest Neigh-
bor (TNN), which we show approximates TBB in the limit of high mutation rate. Section 3
presents experimental comparisons with other approaches on a range of datasets.

(a) (b) 

Figure 2: Illustration of the Tree-Based Bayesian approach to semi-supervised learning. (a)
We observe a set of unlabeled objects (small points) with some latent hierarchical structure
(gray ellipses) along with two positive and two negative examples of a new concept (black
and white circles). (b) Inferring the latent tree, and treating the concept as generated from
a mutation process on the tree, we can probabilistically classify the unlabeled objects.

2 Tree-Based Bayes (TBB)

We assume a binary classification problem with Y ∈ {−1, 1}n. We choose a label yi for
unlabeled object xi by computing p(yi = 1|Yobs, X) and thresholding at 0.5. Generaliza-
tion to the multi-class case will be straightforward.

Ideally we would sum over all possible latent trees T :

p(yi = 1|Yobs, X) =
∑

T

p(yi = 1|Yobs, T )p(T |Yobs, X) (1)



First we consider p(yi = 1|Yobs, T ) and the classification of object xi given a particular
tree T . Section 2.2 discusses p(T |Yobs, X), the inference of tree T , and approaches to
approximating the sum over trees in Equation 1.

We predict object xi’s label by summing over all possible complete labelings Y of the data:

p(yi = 1|Yobs, T ) =
∑

Y

p(yi = 1|Y )p(Y |Yobs, T ) (2)

=
∑

Y

p(yi = 1|Y )p(Yobs|Y, T )p(Y |T )

p(Yobs|T )
(3)

=

∑

Y p(yi = 1|Y )p(Yobs|Y )p(Y |T )
∑

Y p(Yobs|Y )p(Y |T )
(4)

In general, the likelihood p(Yobs|Y ) depends on assumptions about sampling and noise.
Typical simplifying assumptions are that the labeled objects were chosen randomly from
all objects in the domain, and that all observations are free of noise. Then p(Yobs|Y ) ∝ 1
if Yobs is consistent with Y and is zero otherwise.

Under these assumptions, Equation 4 becomes:

p(yi = 1|Yobs, T ) =

∑

Y consistent with Yobs:yi=1
p(Y |T )

∑

Y consistent with Yobs
p(Y |T )

(5)

The probability that yi = 1 reduces to the weighted fraction of label vectors consistent with
Yobs that set yi = 1, with each label vector weighted by its prior under the tree, p(Y |T ).

When class frequencies are unbalanced, small training sets provide little scope for learning
if constructed using random sampling. Consider the problem of identifying genetic markers
for a disease that afflicts one person in 10,000. A training set for this problem might be
constructed by “retrospective sampling,” e.g. taking data from 20 patients with the disease
and 20 healthy subjects. Randomly sampling subjects from the entire population would
mean that even a medium-sized training set would have little chance of including anyone
with the disease.

Retrospective sampling can be modeled by specifying a more complex likelihood
p(Yobs|Y ). The likelihood can also be modified to handle additional complexities, such
as learning from labeled examples of just a single class, or learning in the presence of label
noise. We consider none of these complexities here. Our experiments explore both ran-
dom and retrospective sampling, but the algorithm we implement is strictly correct only for
noise-free learning under random sampling.

2.1 Bayesian classification with a mutation model

In many tree-structured domains it is natural to think of features arising from a history
of stochastic events or mutations. We develop a mutation model that induces a sensible
“smoothness” prior p(Y |T ) and enables efficient computation of Equation 5 via belief
propagation on a Bayes net. The model combines aspects of several previous proposals for
probabilistic learning with trees [8, 9, 10].

Let L be a feature corresponding to the class label. Suppose that L is defined at every
point along every branch, not just at the leaf nodes where the data points lie. Imagine L
spreading out over the tree from root to leaves — it starts out at the root with some value
and could switch values at any point along any branch. Whenever a branch splits, both
lower branches inherit the value of L at the point immediately before the split.



Transitions between states of L are modeled using a continuous-time Markov chain with
infinitesimal matrix:

Q =

[

−λ λ
λ −λ

]

The free parameter, λ, will be called the mutation rate. Note that the mutation process is
symmetric: mutations from -1 to 1 are just as likely as mutations in the other direction.
Other models of mutation could be substituted if desired. Generalization to the k-class
case is achieved by specifying a k by k matrix Q, with −λ on the diagonal and λ

k−1
on the

off-diagonal.

Transition probabilities along a branch of length t are given by:

eQt =

[

1+e−2λt

2

1−e−2λt

2
1−e−2λt

2

1+e−2λt

2

]

(6)

That is, the probability that a parent and child separated by a branch of length t have
different values of L is 1−e−2λt

2
.

This mutation process induces a prior p(Y |T ) equal to the probability of generating the
label vector Y over leaves of T under the mutation process. The resulting distribution
favors labelings that are “smooth” with respect to T . Regardless of λ, it is always more
likely for L to stay the same than to switch its value along a branch. Thus labelings that
do not require very many mutations are preferred, and the two hypotheses that assign the
same label to all leaf nodes receive the most weight. Because mutations are more likely to
occur along longer branches, the prior also favors hypotheses in which label changes occur
between clusters (where branches tend to be longer) rather than within clusters (where
branches tend to be shorter).

The independence assumptions implicit in the mutation model allow the right side of Equa-
tion 5 to be computed efficiently. Inspired by [9], we set up a Bayes net with the same
topology as T that captures the joint probability distribution over all nodes. We associate
with each branch a conditional probability table that specifies the value of the child condi-
tioned on the value of the parent (based on Equation 6), and set the prior probabilities at
the root node to the uniform distribution (the stationary distribution of the Markov chain
specified by Q). Evaluating Equation 5 now reduces to a standard problem of inference in a
Bayes net – we clamp the nodes in Yobs to their observed values, and compute the posterior
marginal probability at node yi. The tree structure makes this computation efficient and
allows specially tuned inference algorithms, as in [9].

2.2 A distribution over trees

We now consider p(T |Yobs, X), the second component of Equation 1. Using Bayes’ theo-
rem:

p(T |Yobs, X) ∝ p(Yobs, X|T )p(T ) (7)

We assume that each discrete feature in X is generated independently over T according
to the mutation model just outlined. Continuous features can be handled by an analogous
stochastic diffusion process in a continuous space (see for example [11]). Because the fea-
tures are conditionally independent of each other and of Yobs given the tree, p(Yobs, X|T )
can be computed using the methods of the previous section.

To finish the theoretical development of the model it remains only to specify p(T ), a prior
over tree structures. Section 3.2 uses a uniform prior, but a Dirichlet Diffusion Tree prior
is another option [11].



2.3 Approximating the sum over trees

The sum over trees in Equation 1 is intractable for datasets of even moderate size. We
therefore consider two approximations. Markov Chain Monte Carlo (MCMC) techniques
have been used to approximate similar sums over trees in Bayesian phylogenetics [12], and
Section 3.2 applies these ideas to a small-scale example. Although theoretically attractive,
MCMC approaches are still expensive to use with large datasets. Section 3.1 follows a
simpler approach: we assume that most of the probability p(T |Yobs, X) is concentrated
on or near the most probable tree T ∗ and approximate Equation 1 as p(yi = 1|Yobs, T

∗).
The tree T ∗ can be estimated using more or less sophisticated means. In Section 3.1 we
use a greedy method – average-link agglomerative clustering on the object-feature matrix
X , using Hamming or Euclidean distance in discrete or continuous domains, respectively.
In Section 3.2 we compare this greedy method to the best tree found in our MCMC runs.
Note that we ignore Yobs when building T ∗, because we run many trials on each dataset
and do not want to compute a new tree for each value of Yobs. Since our data include many
features and few labeled objects, the contribution of Yobs is likely to be negligible.

2.4 Tree Nearest Neighbor (TNN)

A Bayesian formulation based on the mutation process provides a principled approach to
learning with trees, but there are simpler algorithms that instantiate similar intuitions. For
instance, we could build a one-nearest-neighbor classifier using the metric of distance in
the tree T (with ties resolved randomly). It is clear how this Tree Nearest Neighbor (TNN)
algorithm reflects the assumption that nearby leaves in T are likely to have the same label,
but it is not necessarily clear when and why this simple approach should work well.

An analysis of Tree-Based Bayes provides some insight here – TBB and TNN become
equivalent when the λ parameter of TBB is set sufficiently high.

Theorem 1 For each ultrametric tree T , there is a λ0 such that TNN and TBB produce
identical classifications for all examples with a unique nearest neighbor when λ > λ0 .

A proof is available at http://www.mit.edu/˜ckemp/papers/
treesslproof.pdf, but we give some intuition for the result here. Consider
the Bayes net described in Section 2.1 and suppose xi is an unlabeled object. The value
chosen for yi will depend on all the labels in Yobs, but the influence of any single label
decreases with distance in the tree from yi. Once λ becomes sufficiently high it can be
shown that yi is always determined uniquely by the closest labeled example in the tree.

Given this equivalence between the algorithms, TNN is the method of choice when a high
mutation rate is indicated. It is not only faster, but numerically more stable. For large
values of λ, the probabilities manipulated by TBB become very close to 0.5 and variables
that should be different may become indistinguishable within the limits of computational
precision. Our implementation of TBB therefore uses TNN when cross-validation indicates
that a sufficiently high value of λ is required.

3 Experiments

3.1 Trees versus Manifolds

We compared TBB and TNN with the Laplacian method of Belkin and Niyogi [4], an
approach that effectively assumes a latent manifold structure T . We also ran generic one-
nearest neighbor (NN) as a baseline.

The best performing method on a given dataset should be the algorithm that assumes the



right latent structure for that domain. We therefore tested the algorithms on several different
types of data: four taxonomic datasets (Beetles, Crustaceans, Salamanders and Worms,
with 192, 56, 30 and 286 objects respectively), two molecular biology sets (Gene Promoter
and Gene Splice, with sizes 106 and 3190), and two “manifold” sets (Digits and Vowels,
with sizes 10,000 and 990).

The taxonomic datasets were expected to have a tree-like structure. Each set de-
scribes the external anatomy of a group of species, based on data available at http:
//biodiversity.uno.edu/delta/. One feature in the Beetles set, for example,
indicates whether a beetle’s body is “strongly flattened, slightly flattened to moderately
convex, or strongly convex.” Since these taxonomic sets do not include class labels, we
chose features at random to stand in for the class label. We averaged across five such
choices for each dataset.

The molecular biology sets were taken from the UCI repository. The objects in both sets
are strings of DNA, and tree structures might also be appropriate here since these strings
arose through evolution. The manifold sets arose from human motor behaviors, and were
therefore expected to have a low-dimensional manifold structure. The Digits data are a
subset of the MNIST data, and the Vowels data are taken from the UCI repository.

Our experiments focused on learning from very small labeled sets. The number of labeled
examples was always set to a small multiple (m = 1, 2, 3, 5, or 10) of the total number
of classes. The algorithms were compared under random and retrospective sampling, and
training sets were always sampled with replacement. For each training-set size m, we av-
eraged across 10 values of Yobs obtained by randomly sampling from the vector Y . Free
parameters for TBB (λ) and Laplacian (number of nearest neighbors, number of eigenvec-
tors) were chosen using randomized leave-one-out cross-validation.

Figure 3a shows the performance of the algorithms under random sampling for four rep-
resentative datasets. TBB outperforms the other algorithms across the four taxonomic
sets (only Beetles and Crustaceans shown), but the differences between TBB and Near-
est Neighbor are rather small. These results do suggest a substantial advantage for TBB
over Laplacian in tree-structured domains. As expected, this pattern is reversed on the
Digits set, but it is encouraging that the tree-based methods can still improve on Nearest
Neighbor even for datasets that are not normally associated with trees. Neither method
beats the baseline on the Vowels or the Gene Promoter sets, but TBB performs well on the
Gene Splice set, which suggests that it may find further uses in computational biology.

More dramatic differences between the algorithms appear under retrospective sampling
(Figure 3b). There is a clear advantage here for TBB on the taxonomic sets. TBB fares
better than the other algorithms when the class proportions in the training set do not match
the proportions in the population, and it turns out that many of the features in the taxonomic
datasets are unbalanced. Since the other datasets have classes of approximately equal size,
the results for retrospective sampling are similar to those for random sampling.

While not conclusive, our results suggest that TBB may be the method of choice on tree-
structured datasets, and is robust even for datasets (like Digits) that are not clearly tree-
structured.

3.2 MCMC over trees

Figure 3 shows that TBB can perform well on real-world datasets using only a single
tree. Working with a distribution over trees, although costly, could improve performance
when there is not sufficient data to strongly constrain the best tree, or when the domain is
not strongly tree-structured. Using a small synthetic example, we explored one such case:
learning from very sparse and noisy data in a tree-structured domain.
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Figure 3: Error rates for four datasets under (a) random and (b) retrospective sampling, as
a function of the number of labeled examples m per class. Mean standard error bars for
each dataset are shown in the upper right corner of the plot.
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Figure 4: Error rates on sparse artificial data
as a function of number of labels observed.

We generated artificial datasets consist-
ing of 20 objects. Each dataset was based
on a “true” tree T0, with objects at the
leaves of T0. Each object was repre-
sented by a vector of 20 binary features
generated by a mutation process over T0,
with high λ. Most feature values were
missing; the algorithms saw only 5 of
the 20 features for each object. For each
dataset, we created 20 test concepts from
the same mutation process. The algo-
rithms saw m labeled examples of each
test concept and had to infer the labels of
the remaining objects. This experiment
was repeated for 10 random trees T0.

Our MCMC approach was inspired by an
algorithm for reconstruction of phyloge-
netic trees [12], which uses Metropolis-
Hastings over tree topologies with two
kinds of proposals: local (nearest neigh-
bor interchange) and global (subtree
pruning and regrafting). Unlike the pre-
vious section, none of the trees considered (including the true tree T0) was ultrametric.
Instead, each branch in each tree was assigned a fixed length. This meant that any two trees



with the same hierarchical structure were identical, and we did not have to store trees with
the same topology but different branch lengths.

Figure 4 shows the mean classification error rate, based on 1600 samples after a burn-in of
400 iterations. Four versions of TBB are shown: “ideal” uses the true tree T0, “MCMC”
uses model averaging over a distribution of trees, “modal” uses the single most likely tree in
the distribution, and “agglom” uses a tree built by average-link clustering. The ideal learner
beats all others because the true tree is impossible to identify with such sparse data. Using
MCMC over trees brings TBB substantially closer to the ideal than simpler alternatives that
ignore the tree structure (NN) or consider only a single tree (modal, agglom).

4 Conclusion

We have shown how to make optimal Bayesian concept learning tractable in a semi-
supervised setting by assuming a latent tree structure that can be inferred from the unla-
beled data and defining a prior for concepts based on a mutation process over the tree. Our
Bayesian framework supports many possible extensions, including active learning, feature
selection, and model selection. Inferring the nature of the latent structure T – rather than
assuming a manifold structure or a tree structure – is a particularly interesting problem.
When little is known about the form of T , Bayesian methods for model selection could
be used to choose among approaches that assume manifolds, trees, flat clusters, or other
canonical representational forms.
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