TNN isa special case of TBB
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TBB (Tree-Based Bayes) and TNN (Tree Nearest Neighbor) are two algorithms for semi-
supervised learning described in [1]. Both take a tree with a small number of labeled
leaves and classify all remaining leaves. TBB includes a single free parameter A, and TBB
becomes equivalent to TNN once X is set sufficiently high:

Theorem 1 For each ultrametric tree 7, there is a A such that TNN and TBB produce
identical classifications for all examples with a unique nearest neighbor.

We prove the theorem here.

The proof depends critically on the mutation model used to define TBB. Let L be a variable
corresponding to the class label. The probability that L changes value along a branch b of
length |b] is
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Note that the mutation process is conservative: it is always more likely for L to stay the
same than to switch along any branch.

Let the “skeleton’ of 7 be the subtree consisting of all paths from the labeled leaves to
the root. Since the mutation process is conservative, the classification of any node N;
according to TBB is the most likely value at the node where the path from N; meets the
skeleton. Let IV; be any labeled node, N, be the set of all labeled nodes, and Ny, _; be the
set of all labeled nodes except N;.

Let IV, be the most recent ancestor of IV; with two labeled descendants (if there is no such
ancestor, then N is the only labeled node, and both algorithms will label all nodes with
n;, the value at IV;). Without loss of generality, suppose that n; = 1, and that the distance
between N; and N, is 1. We establish the theorem by showing that every node in the
skeleton between N; and N, has a posterior distribution that favors n; = 1 once A grows
large.

Suppose N,, is a node in the skeleton between N; and N,,. The posterior probability at V,,,
is:
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The denominator does not depend on n,,,. Thus:
p(nm = 1ng) o< p(ng = ny = 1,np—;)p(nm = 1|nr—;)
x p(n; = 1n, = 1) Z p(nm = 1ng)p(na|nn—;).
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Let ¢ = p(nq = 0|nz—;). Then:
p(nm = 1nr) o p(nj = 1nm = 1)(p(nm = 1ne = 0)g + p(nm = 1jna = 1)(1 = q)).

Assume that the distance between V; and V,,, is d (and thus that the distance between N,
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and N, is 1 — d). Using Equation 1, p(n; = 1|n,, = 1) = 1+ p(n,, = 1|n, = 0) =
loeT22079 yand p(ny, = 1ln, = 1) = 71"’672;(1%). Thus:
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Assume that ¢ > 0.5, otherwise every skeleton node between IV; and IV, has a posterior
that favors 1. It is now straightforward to show that p(n,, = 1|ng) > p(n, = 0|ng) if
andonly if d < dnaz = 5 + 75 log(2q+1).

We give a worst-case analysis to show that limy oo dinee = 1. FOr a given A, d,,q. will
be smallest when ¢ is largest: in other words, when there is the best evidence possible
that n, = 0. Assume that the tree has k& + 1 external nodes. Then ¢ will be largest
when all external nodes except IV; are set to 0, and have N, as their parent. Since the
tree is ultrametric, the distance between any leaf and NV, is at least 1. It follows that
q < Gmaz = p(n,, = 0|ny), where N/ is the root of the tree in Figure 1.
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Figure 1: The k& + 1-leaf tree which produces the largest value of ¢ for fixed A
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since the prior distribution at the root of the tree is uniform.
Each leaf value is independent of all the others given n/,, so

p(nl, = 0|ng) < p(ny = 0|n), =0)...p(nx = 0[n,, = 0).
Using the mutation model again, p(n, = O|nz) o (1 + e*”)k, and p(n, = 1|ng)

(1—e=2%)". Thus
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Using the binomial series

(1+z)k =1+ke+ (k)x2+ <k>x3
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we have
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Thus limy o dmee = 1 as required. It follows that A can be set sufficiently high that all
nodes in the skeleton between N; and N, have a posterior that favors 1.
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