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TBB (Tree-Based Bayes) and TNN (Tree Nearest Neighbor) are two algorithms for semi-
supervised learning described in [1]. Both take a tree with a small number of labeled
leaves and classify all remaining leaves. TBB includes a single free parameter λ, and TBB
becomes equivalent to TNN once λ is set sufficiently high:

Theorem 1 For each ultrametric tree T , there is a λ such that TNN and TBB produce
identical classifications for all examples with a unique nearest neighbor.

We prove the theorem here.

The proof depends critically on the mutation model used to define TBB. Let L be a variable
corresponding to the class label. The probability that L changes value along a branch b of
length |b| is

p(L changes along b) =
1 − e−2λ|b|

2
. (1)

Note that the mutation process is conservative: it is always more likely for L to stay the
same than to switch along any branch.

Let the ‘skeleton’ of T be the subtree consisting of all paths from the labeled leaves to
the root. Since the mutation process is conservative, the classification of any node Ni

according to TBB is the most likely value at the node where the path from Ni meets the
skeleton. Let Nj be any labeled node, NL be the set of all labeled nodes, and NL−j be the
set of all labeled nodes except Nj .

Let Na be the most recent ancestor of Nj with two labeled descendants (if there is no such
ancestor, then Nj is the only labeled node, and both algorithms will label all nodes with
nj , the value at Nj). Without loss of generality, suppose that nj = 1, and that the distance
between Nj and Na is 1. We establish the theorem by showing that every node in the
skeleton between Nj and Na has a posterior distribution that favors nj = 1 once λ grows
large.

Suppose Nm is a node in the skeleton between Nl and Na. The posterior probability at Nm

is:

p(nm = 1|nL) = p(nm = 1|nj , nL−j)

=
p(nj = 1|nm = 1, nL−j)p(nm = 1|nL−j)

p(nj = 1|nL−j)
.



The denominator does not depend on nm. Thus:

p(nm = 1|nL) ∝ p(nj = 1|nm = 1, nL−j)p(nm = 1|nL−j)

∝ p(nj = 1|nm = 1)
∑

na∈{0,1}

p(nm = 1|na)p(na|nL−j).

Let q = p(na = 0|nL−j). Then:

p(nm = 1|nL) ∝ p(nj = 1|nm = 1)(p(nm = 1|na = 0)q + p(nm = 1|na = 1)(1 − q)).

Assume that the distance between Nj and Nm is d (and thus that the distance between Nm

and Na is 1− d). Using Equation 1, p(nj = 1|nm = 1) = 1+e−2λd

2 , p(nm = 1|na = 0) =
1−e−2λ(1−d)

2 , and p(nm = 1|na = 1) = 1+e−2λ(1−d)

2 . Thus:

p(nm = 1|nL) ∝
1 + e−2λd

2

(

1 − e−2λ(1−d)

2
q +

1 + e−2λ(1−d)

2
(1 − q)

)

.

Similarly,

p(nm = 0|nL) ∝
1 − e−2λd

2

(

1 + e−2λ(1−d)

2
q +

1 − e−2λ(1−d)

2
(1 − q)

)

.

Assume that q > 0.5, otherwise every skeleton node between Nj and Na has a posterior
that favors 1. It is now straightforward to show that p(nm = 1|nL) > p(nm = 0|nL) if
and only if d < dmax = 1

2 + 1
4λ

log( 1
2q−1 ).

We give a worst-case analysis to show that limλ→∞ dmax = 1. For a given λ, dmax will
be smallest when q is largest: in other words, when there is the best evidence possible
that na = 0. Assume that the tree has k + 1 external nodes. Then q will be largest
when all external nodes except Nj are set to 0, and have Na as their parent. Since the
tree is ultrametric, the distance between any leaf and Na is at least 1. It follows that
q < qmax = p(n′

a = 0|nL), where N ′
a is the root of the tree in Figure 1.
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Figure 1: The k + 1-leaf tree which produces the largest value of q for fixed λ

Now

p(n′
a = 0|nL) =

p(nL|n
′
a = 0)p(n′

a = 0)

p(nL)

=
p(nL|n

′
a = 0)

2p(nL)

∝ p(nL|n
′
a = 0).



since the prior distribution at the root of the tree is uniform.

Each leaf value is independent of all the others given n′
a, so

p(n′
a = 0|nL) ∝ p(n1 = 0|n′

a = 0) . . . p(nk = 0|n′
a = 0).

Using the mutation model again, p(na = 0|nL) ∝
(

1 + e−2λ
)k

, and p(na = 1|nL) ∝
(

1 − e−2λ
)k

. Thus

qmax =
1

1 +
(

1−e−2λ

1+e−2λ

)k
.

Now

lim
λ→∞

1

λ
log

(

1

2qmax − 1

)

= lim
λ→∞

1

λ
log

(

(1 − e−2λ)k − (1 + e−2λ)k

(1 + e−2λ)k + (1 + e−2λ)k

)

= lim
λ→∞

1

λ
log

(

(1 − e−2λ)k − (1 + e−2λ)k

2

)

= lim
λ→∞

1

λ
log((1 − e−2λ)k − (1 + e−2λ)k).

Using the binomial series

(1 + x)k = 1 + kx +

(

k

2

)

x2 +

(

k

3

)

x3 . . .

we have

lim
λ→∞

1

λ
log

(

1

2qmax − 1

)

= lim
λ→∞

1

λ
log((1 − e−2λ)k − (1 + e−2λ)k)

= lim
λ→∞

1

λ
log(−2ke−2λ − 2

(

k

3

)

e−6λ + . . . )

= lim
λ→∞

1

λ
log(−2ke−2λ)

= lim
λ→∞

1

λ
(log(2k) + log(−e−2λ))

= lim
λ→∞

1

λ
2λ

= 2.

Thus limλ→∞ dmax = 1 as required. It follows that λ can be set sufficiently high that all
nodes in the skeleton between Nj and Na have a posterior that favors 1.
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