TNN is a special case of TBB

C. Kemp, T. L. Griffiths, S. Stromsten \& J. B. Tenenbaum

Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139
\{ckemp, gruffydd, sean_s, jbt\}@mit.edu

TBB (Tree-Based Bayes) and TNN (Tree Nearest Neighbor) are two algorithms for semisupervised learning described in [1]. Both take a tree with a small number of labeled leaves and classify all remaining leaves. TBB includes a single free parameter λ, and TBB becomes equivalent to TNN once λ is set sufficiently high:

Theorem 1 For each ultrametric tree \mathcal{T}, there is a λ such that TNN and TBB produce identical classifications for all examples with a unique nearest neighbor.

We prove the theorem here.
The proof depends critically on the mutation model used to define TBB. Let L be a variable corresponding to the class label. The probability that L changes value along a branch b of length $|b|$ is

$$
\begin{equation*}
p(L \text { changes along } b)=\frac{1-e^{-2 \lambda|b|}}{2} \tag{1}
\end{equation*}
$$

Note that the mutation process is conservative: it is always more likely for L to stay the same than to switch along any branch.

Let the 'skeleton' of \mathcal{T} be the subtree consisting of all paths from the labeled leaves to the root. Since the mutation process is conservative, the classification of any node N_{i} according to TBB is the most likely value at the node where the path from N_{i} meets the skeleton. Let N_{j} be any labeled node, N_{L} be the set of all labeled nodes, and N_{L-j} be the set of all labeled nodes except N_{j}.
Let N_{a} be the most recent ancestor of N_{j} with two labeled descendants (if there is no such ancestor, then N_{j} is the only labeled node, and both algorithms will label all nodes with n_{j}, the value at N_{j}). Without loss of generality, suppose that $n_{j}=1$, and that the distance between N_{j} and N_{a} is 1 . We establish the theorem by showing that every node in the skeleton between N_{j} and N_{a} has a posterior distribution that favors $n_{j}=1$ once λ grows large.

Suppose N_{m} is a node in the skeleton between N_{l} and N_{a}. The posterior probability at N_{m} is:

$$
\begin{aligned}
p\left(n_{m}=1 \mid n_{L}\right) & =p\left(n_{m}=1 \mid n_{j}, n_{L-j}\right) \\
& =\frac{p\left(n_{j}=1 \mid n_{m}=1, n_{L-j}\right) p\left(n_{m}=1 \mid n_{L-j}\right)}{p\left(n_{j}=1 \mid n_{L-j}\right)} .
\end{aligned}
$$

The denominator does not depend on n_{m}. Thus:

$$
\begin{aligned}
p\left(n_{m}=1 \mid n_{L}\right) & \propto p\left(n_{j}=1 \mid n_{m}=1, n_{L-j}\right) p\left(n_{m}=1 \mid n_{L-j}\right) \\
& \propto p\left(n_{j}=1 \mid n_{m}=1\right) \sum_{n_{a} \in\{0,1\}} p\left(n_{m}=1 \mid n_{a}\right) p\left(n_{a} \mid n_{L-j}\right)
\end{aligned}
$$

Let $q=p\left(n_{a}=0 \mid n_{L-j}\right)$. Then:
$p\left(n_{m}=1 \mid n_{L}\right) \propto p\left(n_{j}=1 \mid n_{m}=1\right)\left(p\left(n_{m}=1 \mid n_{a}=0\right) q+p\left(n_{m}=1 \mid n_{a}=1\right)(1-q)\right)$.
Assume that the distance between N_{j} and N_{m} is d (and thus that the distance between N_{m} and N_{a} is $\left.1-d\right)$. Using Equation $1, p\left(n_{j}=1 \mid n_{m}=1\right)=\frac{1+e^{-2 \lambda d}}{2}, p\left(n_{m}=1 \mid n_{a}=0\right)=$ $\frac{1-e^{-2 \lambda(1-d)}}{2}$, and $p\left(n_{m}=1 \mid n_{a}=1\right)=\frac{1+e^{-2 \lambda(1-d)}}{2}$. Thus:

$$
p\left(n_{m}=1 \mid n_{L}\right) \propto \frac{1+e^{-2 \lambda d}}{2}\left(\frac{1-e^{-2 \lambda(1-d)}}{2} q+\frac{1+e^{-2 \lambda(1-d)}}{2}(1-q)\right)
$$

Similarly,

$$
p\left(n_{m}=0 \mid n_{L}\right) \propto \frac{1-e^{-2 \lambda d}}{2}\left(\frac{1+e^{-2 \lambda(1-d)}}{2} q+\frac{1-e^{-2 \lambda(1-d)}}{2}(1-q)\right)
$$

Assume that $q>0.5$, otherwise every skeleton node between N_{j} and N_{a} has a posterior that favors 1. It is now straightforward to show that $p\left(n_{m}=1 \mid n_{L}\right)>p\left(n_{m}=0 \mid n_{L}\right)$ if and only if $d<d_{\max }=\frac{1}{2}+\frac{1}{4 \lambda} \log \left(\frac{1}{2 q-1}\right)$.

We give a worst-case analysis to show that $\lim _{\lambda \rightarrow \infty} d_{\max }=1$. For a given $\lambda, d_{\max }$ will be smallest when q is largest: in other words, when there is the best evidence possible that $n_{a}=0$. Assume that the tree has $k+1$ external nodes. Then q will be largest when all external nodes except N_{j} are set to 0 , and have N_{a} as their parent. Since the tree is ultrametric, the distance between any leaf and N_{a} is at least 1 . It follows that $q<q_{\max }=p\left(n_{a}^{\prime}=0 \mid n_{L}\right)$, where N_{a}^{\prime} is the root of the tree in Figure 1.

Figure 1: The $k+$ 1-leaf tree which produces the largest value of q for fixed λ

Now

$$
\begin{aligned}
p\left(n_{a}^{\prime}=0 \mid n_{L}\right) & =\frac{p\left(n_{L} \mid n_{a}^{\prime}=0\right) p\left(n_{a}^{\prime}=0\right)}{p\left(n_{L}\right)} \\
& =\frac{p\left(n_{L} \mid n_{a}^{\prime}=0\right)}{2 p\left(n_{L}\right)} \\
& \propto p\left(n_{L} \mid n_{a}^{\prime}=0\right) .
\end{aligned}
$$

since the prior distribution at the root of the tree is uniform.
Each leaf value is independent of all the others given n_{a}^{\prime}, so

$$
p\left(n_{a}^{\prime}=0 \mid n_{L}\right) \propto p\left(n_{1}=0 \mid n_{a}^{\prime}=0\right) \ldots p\left(n_{k}=0 \mid n_{a}^{\prime}=0\right)
$$

Using the mutation model again, $p\left(n_{a}=0 \mid n_{L}\right) \propto\left(1+e^{-2 \lambda}\right)^{k}$, and $p\left(n_{a}=1 \mid n_{L}\right) \propto$ $\left(1-e^{-2 \lambda}\right)^{k}$. Thus

$$
q_{\max }=\frac{1}{1+\left(\frac{1-e^{-2 \lambda}}{1+e^{-2 \lambda}}\right)^{k}}
$$

Now

$$
\begin{aligned}
\lim _{\lambda \rightarrow \infty} \frac{1}{\lambda} \log \left(\frac{1}{2 q_{\max }-1}\right) & =\lim _{\lambda \rightarrow \infty} \frac{1}{\lambda} \log \left(\frac{\left(1-e^{-2 \lambda}\right)^{k}-\left(1+e^{-2 \lambda}\right)^{k}}{\left(1+e^{-2 \lambda}\right)^{k}+\left(1+e^{-2 \lambda}\right)^{k}}\right) \\
& =\lim _{\lambda \rightarrow \infty} \frac{1}{\lambda} \log \left(\frac{\left(1-e^{-2 \lambda}\right)^{k}-\left(1+e^{-2 \lambda}\right)^{k}}{2}\right) \\
& =\lim _{\lambda \rightarrow \infty} \frac{1}{\lambda} \log \left(\left(1-e^{-2 \lambda}\right)^{k}-\left(1+e^{-2 \lambda}\right)^{k}\right)
\end{aligned}
$$

Using the binomial series

$$
(1+x)^{k}=1+k x+\binom{k}{2} x^{2}+\binom{k}{3} x^{3} \ldots
$$

we have

$$
\begin{aligned}
\lim _{\lambda \rightarrow \infty} \frac{1}{\lambda} \log \left(\frac{1}{2 q_{\max }-1}\right) & =\lim _{\lambda \rightarrow \infty} \frac{1}{\lambda} \log \left(\left(1-e^{-2 \lambda}\right)^{k}-\left(1+e^{-2 \lambda}\right)^{k}\right) \\
& =\lim _{\lambda \rightarrow \infty} \frac{1}{\lambda} \log \left(-2 k e^{-2 \lambda}-2\binom{k}{3} e^{-6 \lambda}+\ldots\right) \\
& =\lim _{\lambda \rightarrow \infty} \frac{1}{\lambda} \log \left(-2 k e^{-2 \lambda}\right) \\
& =\lim _{\lambda \rightarrow \infty} \frac{1}{\lambda}\left(\log (2 k)+\log \left(-e^{-2 \lambda}\right)\right) \\
& =\lim _{\lambda \rightarrow \infty} \frac{1}{\lambda} 2 \lambda \\
& =2
\end{aligned}
$$

Thus $\lim _{\lambda \rightarrow \infty} d_{\max }=1$ as required. It follows that λ can be set sufficiently high that all nodes in the skeleton between N_{j} and N_{a} have a posterior that favors 1.

References

[1] C. Kemp, T. L. Griffiths, S. Stromsten, and J. B. Tenenbaum. Semi-supervised learning with trees. Submitted to NIPS 2003.

