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Abstract

Compounding is a common type of word formation exten-
sively studied in linguistics and cognitive psychology. A grow-
ing line of research suggests that the lexicon supports efficient
communication by balancing informativeness and simplicity.
We propose that the formation of novel compounds reflects
a similar tradeoff between informativeness and word length.
We formalize this hypothesis in information-theoretic terms
and develop a computational procedure to evaluate our hy-
pothesis on English noun compounds that emerged over the
past century. We find that attested compounds achieve more
efficient tradeoffs between informativeness and word length
than do alternative word forms. Our work demonstrates how
word formation and compositionality can be connected with
information-theoretic approaches to the design of the lexicon.

Keywords: the lexicon; word formation; compounding; com-
positionality; efficient communication

Introduction
Compounding refers to a process of word formation in which
speakers create novel form-meaning pairings to fill lexical
gaps (Lehrer, 1970) by combining two or more existing free
morphemes (Brinton & Traugott, 2005), e.g., smartphone is
a combination of smart and phone. Compounding is not only
one of the most common processes of novel word formation
across the world’s languages (Algeo, 1980; Wu & Yarowsky,
2018), but is also a prominent example of lexical composi-
tionality in natural language. For these reasons, the analysis
of compounds has garnered considerable interest in linguis-
tics (Blutner, 1998; Jackendoff, 2010), cognitive psychol-
ogy (Medin & Shoben, 1988; Costello & Keane, 2000; Barsa-
lou, Simmons, Barbey, & Wilson, 2003), and computational
studies of language (Mitchell & Lapata, 2010; Reddy, Mc-
Carthy, & Manandhar, 2011; Yazdani, Farahmand, & Hen-
derson, 2015; Salehi, Cook, & Baldwin, 2015; Marelli & Ba-
roni, 2015). Here we present a framework to investigate the
formation of English compounds through the lens of general
communicative principles.

One known factor constraining word formation is that the
word form should deliver its underlying meaning while avoid-
ing redundancy. Štekauer (2005) proposes that two “uni-
versal, contradictory tendencies” underlie word formation:
“economy of speech” and “explicitness of expression”. In
their study of affixation, Marelli and Baroni (2015) sug-
gest that the head of a derived word should be close to
the full word in meaning to facilitate interpretation for the

listener. Lieber (2004) describes the Redundancy Restric-
tion, which states that affixes containing semantic informa-
tion already available in the head word should not be added.
Costello and Keane (2000) also argue that the speaker should
carefully choose the constituents so that they are both neces-
sary and sufficient for signifying the intended meaning. How-
ever, to our knowledge there exists no work that comprehen-
sively examines these general principles in the historical for-
mation of novel compounds.

Our theoretical starting point is a growing line of research
suggesting that the lexicon is structured to support efficient
communication, which we briefly review here focusing on
two aspects: word meaning and word length. Recent work
provides evidence that word meanings efficiently trade off
complexity (or the opposite of simplicity) against informa-
tiveness (Regier, Kemp, & Kay, 2015; Zaslavsky, Kemp,
Regier, & Tishby, 2018). Within a semantic domain, the com-
plexity of a set of semantic categories is based on its size or
description length, though the word forms that label each cat-
egory are typically not considered. A related line of work
is rooted in the study of Zipf (1949), who hypothesized that
more frequent words tend to be short in form due to the need
to communicate successfully while minimizing effort. More
recent work suggests that word length in natural languages
may not be optimized solely with respect to frequency. For in-
stance, Pimentel, Nikkarinen, Mahowald, Cotterell, and Blasi
(2021) shows that morphological composition can result in
longer word forms. Similarly, the principle of uniform infor-
mation density (Jaeger, 2006; Levy & Jaeger, 2007) predicts
that words should be long in unpredictable contexts to make
optimal use of the communication channel (Piantadosi, Tily,
& Gibson, 2011). Here we ask whether novel word formation
is shaped for efficient communication, and as an initial case
study we focus on English noun compounds that emerged
over the past century.

We hypothesize that the formation of novel compound
words should near-optimally trade off informativeness, a
measure of the ease of interpretability of a word, and word
length, a measure of the effort in uttering a word (Zipf,
1949). These two dimensions trade off against each other
when adding morphemes and increasing the length of a novel
form allows its meaning to be specified more precisely.

To test this hypothesis, we develop a computational frame-
work that extends the existing line of work on efficient com-



“Smartphone” …

Figure 1: An illustration of the communicative scenario at the
heart of our framework. A speaker (left) intends to express an
emerging referent by coining a new compound word by com-
bining smart and phone. A listener (right) infers the intended
meaning upon hearing the form. Grey bars signify the proba-
bilities of possible meanings.

munication (Regier et al., 2015; Kemp, Xu, & Regier, 2018;
Zaslavsky et al., 2018; Piantadosi et al., 2011) to general prin-
ciples for word formation. We illustrate this framework in
Figure 1. Given an emerging intended referent such as “a
multi-functional mobile phone”, the speaker might choose to
express that referent by either reusing an existing word form
(e.g., phone) or coining a new term (e.g., smartphone). The
listener in turn needs to reconstruct the intended meaning
given the form uttered by the speaker. We hypothesise that
novel compounds allow a near-optimal tradeoff between ut-
terance length and reconstruction of the intended meaning.
To evaluate this hypothesis, we develop a computational pro-
cedure for testing attested English compounds against a reper-
toire of plausible alternate word forms.

Computational framework
We describe our computational framework in three steps.
First, we explain the basic assumptions. Second, we for-
mulate the two competing dimensions that form the bases of
our efficiency hypothesis. Third, we formulate the hypothesis
drawing on these dimensions.

Assumptions
For simplicity, we assume the spaces of forms and meanings
are discrete spaces. Let Lt = {(w1,m1), ...,(wq,mq)} be the
lexicon of a language at time t consisting of form-meaning
pairs. In our work, we analyze how speakers use elements
of Lt to express meanings with attested coinages in a future
lexicon Lt+1.

We start from a simple communicative scenario involving
a speaker and a listener (Figure 1). Suppose at time t, both
speaker and listener share the same lexicon Lt . The scenario
begins with a novel target meaning m ∈ Lt+1 −Lt which the
speaker wishes to convey. To do so, the speaker chooses a
form w ∈ Lt or creates a compound based on Lt (i.e., w ∈
L∗

t ). The form is observed by the listener who attempts to
reconstruct the intended meaning of w.

Let PS(M|W ) and PL(M|W ) represent the speaker’s and the
listener’s respective probabilistic interpretation of word forms
at time t. We assume PS and PL are identically distributed,

except that for the speaker m is the only intended meaning of
w (i.e., PS(m|w) = 1), whereas for the listener the meaning
of w remains uncertain. We also restrict the support of each
distribution to the meanings attested in Lt and Lt+1.

Formulation of communicative cost
We formulate informativeness by a measure of communica-
tive cost. Intuitively, an informative word should yield a low
communicative cost. The communicative cost of a word form
w with respect to the target meaning m is the amount of infor-
mation lost when the listener reconstructs the meaning from
w. A common distortion measure in the efficient communi-
cation literature is the KL divergence between the speaker’s
intended message and the listener’s reconstruction (Regier
et al., 2015; Zaslavsky et al., 2018). We thus define com-
municative cost as the KL divergence between PS(M|w) and
PL(M|w):

DKL(PS(M|w)||PL(M|w))

= ∑
m′∈M

PS(m′|w) log
PS(m′|w)
PL(m′|w)

=− logPL(m|w)

(1)

The final equality follows from the simplifying assumptions
above: the only time PS(m′|w) is positive is when m′ = m.
Thus the KL divergence is equivalent to a surprisal term,
which captures how much information about the target mean-
ing m is lost when the listener tries to reconstruct it from the
word form w.

We formalize the listener’s probabilistic interpretation of
w, PL(M|w) using the similarity choice model (Luce, 1963;
Nosofsky, 1986), which calculates the probability of a re-
sponse m j given a stimulus wi using the following equation:

P(m j|wi) =
sim(m j,wi)

∑k sim(mk,wi)
(2)

where sim(m j,wi) is the similarity between m j and wi in some
psychological space, and the denominator sums over some set
of responses. We define similarity using the Gaussian decay
function (Nosofsky, 1986):

sim(m j,wi) = exp(−d2
i j) (3)

where di j is the Euclidean distance between xi and x j, the
representations of wi and m j in the psychological space.

In our case, every response is a meaning m j ∈ Lt+1 ∪Lt ,
and the stimulus is a potential word form wi ∈ L∗

t . We in-
stantiate the psychological space using word embeddings.
Since every m j corresponds to a word w j ∈ Lt+1 ∪ Lt , we
set x j as the embedding of w j. We use a composition func-
tion (Mitchell & Lapata, 2010; Yazdani et al., 2015) to repre-
sent potential word forms wi = w1...wn ∈ Ln:

xi = f (v1,v2, ...,vn) (4)

where vk is the embedding of constituent wk, and f is some
composition function.



Formulation of complexity
Complexity reflects the effort required to utter a word. There
are at least three measures that reflect speaker effort: word
frequency which is correlated with processing ease (Papesh &
Goldinger, 2012), well-formedness which predicts ease of ar-
ticulation (Kawasaki & Ohala, 1980), and word length which
yields the number of sounds to be produced. Word length has
been consistently shown to correlate with the amount of infor-
mation conveyed by the form (Piantadosi et al., 2011; Lewis
& Frank, 2016). In our communicative scenario, the listener
relies on information provided by sub-lexical components of
the form w to reconstruct the speaker’s intended meaning. As
the number of these components contributes to length, we use
the length of w, len(w), as our measure of complexity.

Efficiency hypothesis
Under our theoretical framework, communicative cost and
word length compete against each other. If more sub-lexical
components with information useful for guessing m are con-
veyed to the listener, the speaker will spend more effort, and
vice versa. Extending previous work on efficient communi-
cation (Piantadosi et al., 2011; Kemp et al., 2018; Zaslavsky
et al., 2018), we hypothesize that communicative cost and
word length should optimally trade-off against each other in
the process of word formation. That is, for some trade-off
parameter β, the word form w should optimize the following
objective:

argmin
w

− logPL(m|w)+βlen(w) (5)

Specifically, for an attested compound w with meaning m,
our hypothesis predicts it will near-optimally trade off be-
tween its form complexity, len(w), and its communicative
cost, − logPL(m|w).

Materials and methods
Here we describe how we operationalized the framework. We
first describe how we obtained historical lexicons Lt and cal-
culated communicative cost and complexity. We then de-
scribe how we tested our hypothesis by comparing histori-
cally attested compounds against alternative word forms.

A dataset of emerging compounds
As our source of lexicons and attested compounds, we used
the Historical Thesaurus of English, HTE (Kay, Roberts,
Samuels, & Wotherspoon, 2017), and the Large Database
of English Compounds, LADEC (Gagné, Spalding, &
Schmidtke, 2019).

HTE. The HTE provides 793,734 word senses along with
their word form and dates of first and last appearance in his-
torical records. This allowed us to define Lt for every novel
meaning m ∈ Lt+1. We only included entries that are fully al-
phabetic or are bigrams separated by a space or hyphen, and
removed proper nouns.

LADEC. The LADEC is a database of 8,957 adjective-
noun and noun-noun closed English compounds. The list

of compounds is based on the Brown, CELEX and COCA
corpora, as well as phrases provided by Costello, Veale, and
Dunne (2006). In addition to a separation into head and mod-
ifier, every compound is labeled with a meaning predictability
judgement. Meaning predictability is obtained by asking hu-
man participants how predictable a compound’s meaning is
from its parts on a scale of 0 to 100. We retrieved every en-
try’s year of emergence as this compound’s earliest emerging
sense in the HTE.

In our experiments, we defined a novel meaning m at year t
as the word meaning of a compound in LADEC that emerged
at year t +1. For the same m ∈ Lt+1, we defined Lt as all en-
tries that existed at year t according to the HTE. We analyzed
compounds that emerged after 1900 and whose constituents
are in the corresponding Lt , obtaining a historical set of 230
compounds. The size of lexicon Lt ranges from 145k to 170k.

Quantification of communicative cost and
complexity
We now quantify the two competing dimensions of com-
municative cost and complexity, assuring scalability of their
evaluation to a large set of alternate word forms.

Communicative cost. We instantiate the composition
function f in Equation 4 as an additive function (Mitchell &
Lapata, 2008):

xi =
n

∑
k=1

vk (6)

which has proved widely successful despite its simplicity, and
is highly scalable (Shen et al., 2018). We tested two kinds
of word embeddings as our distributional semantic model:
1) pre-trained Word2Vec (Mikolov, Chen, Corrado, & Dean,
2013) and 2) pre-trained subword-informed fastText embed-
dings (Bojanowski, Grave, Joulin, & Mikolov, 2017), both
trained on Common Crawl (Mikolov, Grave, Bojanowski,
Puhrsch, & Joulin, 2018). While fastText can embed ev-
ery word using character n-grams, Word2Vec embeddings are
available for 215 (out of 230) LADEC compounds.

We need to compute Equation 2 for a large number of word
forms, such that computing the denominator becomes very
expensive. We thus considered the following simplified simi-
larity choice model:

P(m j|wi) ∝ sim(m j,wi) (7)

That is, we assume that the denominator is roughly a con-
stant. We validated both full and simplified similarity choice
models using human judgements of meaning predictability in
LADEC by setting Lt+1 ∪Lt as all HTE entries existing in
year 2000 and all entries in LADEC.

Complexity. We used two measures of word length: 1)
orthographic length as number of characters and 2) phone-
mic length. For phonemic length, we used the CMU Pro-
nouncing Dictionary (Lenzo, 2014) which contains 133,854
entries. After lower-casing and intersecting with the HTE, the
size of lexicon Lt spans between 33k and 35k. To compute
the phonemic length of a compound not in the dictionary, we



took the sum of the phonemic lengths of its constituents, ob-
taining phonemic transcriptions for 220 LADEC compounds.

Procedures for testing near-optimality
We hypothesized attested compounds are near-optimal with
respect to the two measures defined in the previous section.
Here we define near-optimality and the statistical tests that
assess the extent to which our hypothesis holds.

For a given target meaning m, the optimality of a form
is defined by Equation 5. However, searching over even
Lt ∪(Lt ×Lt) is intractable, so we resort to exhausting a large,
plausible subset of alternate forms. We used three subsets of
L∗

t : 1) reusing all forms in Lt , 2) a set of forms that are related
to the attested form for m, and 3) greedy search. To create 2),
we first selected the k = 5 closest neighbours of the head word
of the attested compound for m, including the head word it-
self; then we took the Cartesian product between this set and
Lt . To create 3), we first greedily selected the top k = 5 forms
in Lt that minimize the objective function in Equation 5. We
set the trade-off parameter β = {0,0.005,0.025,0.05} as de-
termined in preliminary experiments (larger β reduces the op-
timal form to a single letter or short acronym). We then took
the Cartesian product between this set and Lt . The final size
of the subsets varies from 300k to 3m.

We approximated the theoretically optimal set of forms
by using the forms that exist on the Pareto frontier of this
large sample. Inspired by work in multi-objective evolution-
ary algorithms, we used the non-dominated (ND) rank which
is used to quantify the fitness of an individual in a popula-
tion along multiple objective functions (Jensen, 2003; Tian,
Wang, Zhang, & Jin, 2017).1 We defined the near-optimality
of a form as its ND rank within the whole set of alternatives.

To assess the overall near-optimality of attested com-
pounds, we tested whether the distribution of ND ranks over
the set of attested compounds 1) is significantly higher on av-
erage than samples of alternatives and 2) has a significantly
non-zero skew towards lower ranks, suggesting attested com-
pounds are highly likely to have above average rank. We
assessed the first hypothesis via a permutation test that ran-
domly swapped every attested form with an alternate form
generated for the same target meaning 100,000 times. For a
more focused comparison, we also randomly swapped every
form with a compound created by replacing the constituents
of the attested form with their k = 5 nearest neighbours in Lt .

Results
We first validate our model of communicative cost against hu-
man judgement. We then test our efficiency hypothesis using
historical English compounds and interpret the results. For

1In our case, a word form dominates another form if it is 1)
shorter or more informative and 2) not worse in the other dimen-
sion than the latter. Given that the population of forms is partitioned
into equivalent classes in which no form dominates another, the ND
rank of a form is the number of classes whose members dominate
the form. We computed ND ranks with the log-linear ND sorting
algorithm for 2 objectives by Jensen (2003).

the second part, we present results for fastText and ortho-
graphic length only due to space limitations, but we achieved
similar results using Word2Vec and phonemic length.

Evaluation of communicative cost
We evaluated our model of communicative cost against hu-
man judgements of compound meaning predictability pro-
vided by LADEC (Gagné et al., 2019). For each compound,
we computed four types of communicative cost by taking
the product of {fastText, Word2Vec} embeddings and {full,
simplified} similarity choice models. Using fastText and
the full model, the Pearson correlation between communica-
tive cost and meaning predictability is −0.408, p < 0.001,
N = 8299; using Word2Vec and the full model, the corre-
lation is −0.408, p < 0.001, N = 7085; using fastText and
the simplified model, the correlation is −0.412, p < 0.001,
N = 8299; using Word2Vec and the simplified model, the
correlation is −0.399, p < 0.001, N = 7085.2 We observe
a statistically significant correlation between our model and
meaning predictability in all cases, providing empirical justi-
fication for our model of communicative cost. Moreover, we
observe performance based on full and simplified similarity
choice models are comparable.

For a more careful comparison of the two choice models,
we correlated communicative costs given by the two choice
models. Using fastText, the Pearson correlation is 0.955, p <
0.001, N = 8299; using Word2Vec, the correlation is 0.631,
p < 0.001, N = 7085. We observe the simplified model is
strongly correlated with the full model when using fastText,
albeit less so when using Word2Vec. For this reason, we used
the simplified similarity choice model in our analyses.

Evaluation of efficiency hypothesis
We assessed the near-optimality of historical attested com-
pounds that emerged during the 20th century. The mean
rank of the attested compounds is 23812.98 (p < 0.001,n =
230). The moment coefficient of skewness (Doane & Seward,
2011) of the distribution is 2.36 (p < 0.001,n = 230), indi-
cating a significant right skew. Figure 2 shows this distri-
bution along with the rank distribution of a permuted sam-
ple. We observe that relative to a rank distribution of ran-
domly sampled forms, the attested distribution concentrates
around high ranks. In a more focused comparison, we exam-
ine whether these attested compounds are more optimal than
near-synonym forms. Similar to the previous comparison, the
mean rank of the distribution is significantly higher than the
mean rank of near-synonym sets (p < 0.001,n = 230).

To test whether both dimensions contribute to the overall
near-optimality of attested compounds, we performed an ad-
ditional analysis where we repeated the first set of compar-
isons between attested compounds against the general set of
alternatives by controlling for each dimension. Specifically,
for each attested compound, we generated alternatives using

2The difference in sample size is due to intersecting with embed-
ding vocabularies. Correlations do not change significantly if the
same subset of LADEC was used.



Figure 2: Comparisons of ND ranks between attested com-
pounds and the full set of alternatives and a near-synonym
subset. The ranks of a sample of compounds are annotated.

Figure 3: Comparison of ND ranks between attested com-
pounds and alternatives controlling for word length (top) and
communicative cost (bottom). The ranks of a sample of com-
pounds are annotated.

the same procedure, and then discarded all forms that are
longer or have higher communicative cost than the attested
compound. The results are summarized in Figure 3. When
controlling for length, the mean rank of the attested distri-
bution is 23812.98 (p = 0.0004,n = 230), and the moment
coefficient of skewness is 2.36 (p < 0.001,n = 230); when
controlling for communicative cost, the mean rank of the at-
tested distribution is 23812.92 (p < 0.0001,n = 230), and the
moment coefficient of skewness is 2.36 (p < 0.001,n = 230).
We observe that the location and shape of the attested rank
distribution is robust when controlling for either dimension.
These results suggest that both dimensions contribute to the
near-optimality of attested compounds.

Figure 4 compares a sample of attested compounds to al-
ternate word forms with respect to the respective target mean-
ings. Qualitatively, a word form is near-optimal if it is close
to the optimal frontier. Within this sample, we observe some

Figure 4: Qualitative comparison between attested com-
pounds and alternatives for a selected sample of all 230 com-
pounds. Target meanings are shown above each plot; grey
dots correspond to alternate forms, and blue dots correspond
to attested compounds. Black lines indicate the optimal fron-
tiers obtained by interpolating optimal forms. The y-axes are
proportional to the number of bits lost in communication.

Figure 5: Distance of all 230 attested compounds (blue) and
averages over alternative forms (grey) to the Pareto frontier
along the dimensions of communicative cost (top) and com-
plexity (bottom). In each subplot, each pair of vertically
aligned bars corresponds to a target meaning.

attested compounds (e.g., chairperson) are very close to the
frontier, but the others can be relatively far from optimal (e.g.,
highlighter); these correspond to the center and tail of the at-
tested distributions in Figures 2 and 3. Figure 5 summarizes
the location of the attested compounds along each dimension.
All 230 attested compounds are closer to the frontier than al-
ternatives along the length dimension, but the same tendency
is relatively weaker for communicative cost as only 174 are
closer to the frontier than alternatives on average.

Table 1 shows the optimal set of word forms with respect
to two target meanings (“database” and “firmware”). We ob-
serve that long optimal forms tend to be more semantically
transparent and vice versa (e.g., with respect to “database”,
searchable-data vs. db). This suggests that length and com-
municative cost trade off against each other, and that our
method captures intuitions of informativeness for alternate
word forms in addition to attested ones. Table 2 shows a sam-
ple of near-synonym alternatives. Here we see a clear trend



database a, db, data, data-db, list-data, data-query,
archive-query, searchable-data

firmware a, xi, mem, cw-os, kit-os, web-rom,
otas-rom, piezo-rom, karoro-rom, pedanty-rom,
decoding-rom, algorithm-rom, flash-hardware, resetter-
kernel, updater-software, kernite-microcode, kernelly-
microcode, polyphone-microcode, caracoling-microcode,
dressership-microcode, petticoating-microcode,
compatibility-microcode

Table 1: Pareto sets with respect to two target meanings
(database and firmware). The alternate forms are sorted by
length, and forms consisting of two constituents are shown
using a dash.

that attested compounds tend to avoid redundant, uninforma-
tive morphemes (e.g., firm-ware vs. company-whiteware).
Taken together, these comparisons provide evidence for our
hypothesis that attested compounds should near-optimally
trade-off word length and communicative cost.

Discussion
Existing literature on word formation proposes that
novel words should be informative while avoiding redun-
dancy (Lieber, 2004; Costello & Keane, 2000). By compar-
ing attested compounds to alternatives and showing that the
latter tend to be redundant, our work corroborates earlier the-
ories of word formation. However, our theory goes beyond
redundancy avoidance by also predicting that even if two po-
tential constituents are similarly informative, the shorter one
is preferable (e.g., data-base vs. information-base).

Our formulation of communicative cost is related to inde-
pendently derived formalisms. By defining meaning using
formal semantics, Blutner (1998) proposes a similar formula-
tion of communicative cost. Blutner’s proposal applies more
generally to all types of utterances and is not derived from a
communicative scenario. Intuitively, one might expect that
the form-meaning systematicity of a language (Monaghan,
Shillcock, Christiansen, & Kirby, 2014; Pimentel, McCarthy,
Blasi, Roark, & Cotterell, 2019) relates to the communica-
tive cost of a form.3 By taking the average of Equation 1, we
see that communicative cost is inversely proportional to the
mutual information between meaning and form, I(M;W ), an
information-theoretic definition of systematicity (Pimentel et
al., 2019). This connection mirrors a link between language
use and systematicity previously found in controlled experi-
ments (Nölle, Staib, Fusaroli, & Tylén, 2018).

We note that our efficiency hypothesis is based on an one-
shot communicative scenario where the need to communicate
a specific novel meaning arises. Thus our hypothesis primar-
ily pertains to synchronic word formation and not historical

3For example, in English the head word of a compound tends
to signify its word class (Jackendoff, 2010), which helps reduce the
uncertainty of the compound’s meaning.

data-base, data-ground, data-core, statistics-structure,
analysis-structure, information-structure, analysis-core,
information-base, analytic-score, information-core,
statistics-core, analytics-ground, information-basing

client-ware, software, company-ware, firm-ware,
steadfast-ware, client-pottery, company-whiteware, firm-
pottery, company-pottery, soft-whiteware, soft-stoneware,
steadfast-wares, firm-stoneware, steadfast-stoneware

Table 2: Near-synonym set for database and firmware. The
target meaning is represented by its attested form in English.
Every row is sorted by ND rank in descending order. Forms
consisting of two constituents are shown using a dash.

language change, even though we used historical data of com-
pounds to recreate communicative scenarios. Nonetheless,
historical changes may have confounded our results. For ex-
ample, the communicative cost of certain words may have
changed over time due to semantic change (e.g., db used to
signify “decibel” in the early 1900s, but has now acquired the
sense “database”). One potential way to control for this fac-
tor is to repeat the analyses using embeddings trained on his-
torical corpora (Hamilton, Leskovec, & Jurafsky, 2016; Du-
bossarsky, Hengchen, Tahmasebi, & Schlechtweg, 2019).

Although we focused on word length and informativeness,
our theory does not preclude other factors known to restrict
the plausibility of compounds. For instance, the frequency
of the constituents predicts the ease of compound process-
ing (Juhasz, Starr, Inhoff, & Placke, 2003) and the character-
level bigram probability at the boundary of constituents af-
fects compound parsing (Gagné et al., 2019), which may
explain why certain short and informative alternative forms
(e.g., list-data for database) are never attested.

Conclusion
We presented a formal framework for connecting two areas
of research that have had little overlap so far: communicative
efficiency of the lexicon, and the formation of novel word
forms. Using an English dataset of historical compounds over
the past century, we provided evidence that emerging lexical
compounds support efficient communication by trading off
informativeness against word length.

Our work helps to explain why certain word forms are cho-
sen to fill lexical gaps ahead of other logically possible alter-
natives, and our framework offers an information-theoretic
account for one important function of lexical composition-
ality: to support efficient communication about emerging
items. We are optimistic that this framework will provide
a foundation for future analyses that account for other pro-
cesses of word formation in English and other languages.
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