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Abstract

Compounding is a common word formation process in many
languages around the world. Previous semantic analyses of
compounding suggest that analogy and composition are cru-
cial cognitive processes that underlie the formation of new
compounds, but these processes are typically considered sep-
arately. Here, we formulate a computational model of com-
pounding that integrates both analogy and composition. Com-
pared to simpler baselines, we show that the model combining
both processes achieves the best performance in predicting the
constituents of attested compounds in English, Chinese, and
German. Our work extends previous semantic-based accounts
of compounding via a computational approach that can be eval-
uated using large-scale crosslinguistic data.

Keywords: compounding; composition; analogy; lexical se-
mantics; computational modelling

Introduction

Compounding refers to the process of creating compound
words and is the most productive source of new lexical items
in many languages around the world (Brinton & Traugott,
2005; Bauer, 2011; Schliicker, 2019). Although there are
different definitions of compounds in the literature, one min-
imal definition holds that they are lexical items that express
specific concepts by combining two or more existing words.
For example, the concept defined by “a portable wireless tele-
phone” is expressed by the compound cellphone in English
and the compound shou-ji (lit. hand-machine) in Chinese,
which both combine two separate words. Here, we aim to
understand and model the cognitive processes that underlie
compounding across languages.

Existing accounts of compounding consider both the form
and meaning of compounds (e.g., Stekauer & Lieber, 2005).
Here, we are primarily interested in the role of compounds in
the expression of concepts, so we focus on reviewing previous
semantic analyses of compounding. The traditional approach
views compound interpretation as a process of identifying the
relation between its constituents and aims to describe regular-
ities in these relations (e.g., Levi, 1978; Lieber, 1983; Jack-
endoff, 2010; Levin, Glass, & Jurafsky, 2019). In turn, reg-
ularities in these relations constrain the possible compound
expressions of intended concepts. For example, Levi (1978)
argues that head-modifier relations in noun-noun compounds
tend to belong to one of nine meta-relations, while other in-
tended relations tend to be explicitly encoded in the com-

pound (e.g., eating should not be removed from ﬁsh-eating4790

dinosaurs). In a recent study, Levin et al. (2019) show that
English noun compounds denoting artifacts tend to invoke
head-modifier relations highlighting events of their creation
or use, whereas noun compounds denoting natural kinds tend
to invoke relations highlighting their so-called essence (e.g.,
perceptual properties). The examples above show that tra-
ditional semantic analyses of compounding differ in scope
and granularity. However, since they focus on the semantic
composition of compound constituents, these accounts tend
to ignore non-compositional processes in compounding.

An alternate approach examines the semantics of com-
pounding by considering the general cognitive process of
analogy (e.g., Ryder, 1994; Booij, 2010; Klégr & Cermdk,
2010). In this view, one or more existing compounds that
share the same constituent can form a productive pattern that
can be modified to create new compounds; these new com-
pounds are regarded as analogical compounds. Crucially, the
shared constituent in a productive pattern tends to develop
bound meanings that shift away from its original lexical-
ized meaning, which are then inherited by new compounds
based on the pattern (Booij, 2010). For example, blue-
collar and white-collar form a productive pattern that led to
the creation of the new compound green-collar (Mattiello
& Dressler, 2018). Here, the pattern X + collar signifies
membership in a certain profession, which is distinct from
compositional formations like dog collar. Compounding can
create word combinations that share no constituent with any
existing compound and thus do not involve analogy, but the
non-compositional nature of analogical compounds suggests
that analogy may nonetheless complement compositional ac-
counts of compounding.

In this study, we formulate a computational account of
compounding that combines both composition and analogy.
Specifically, we hypothesize that speakers create new com-
pounds by inferring how word combinations may be inter-
preted by listeners. Listener interpretation may involve the
composition of constituents, or in the case where one con-
stituent overlaps with existing compounds that form a pro-
ductive pattern, it may involve composing the bound meaning
of the pattern with the other constituent. The speaker finally
chooses a compound with an interpretation that is very simi-
lar to the intended concept. We illustrate this idea in Figure 1.

Our work builds on a line of computational work on vector-
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Figure 1: Analogy and composition in compounding. Panel
(A) shows a listener that tries to interpret the compound
green-collar. The listener chooses between 1) a composi-
tional strategy and 2) an analogical strategy, in which the
meaning of the pattern is based on blue-collar and white-
collar. Panel (B) illustrates predictions on possible com-
pound expressions for the concept “belonging to a green in-
dustry,” which is illustrated on the right. Grey bars on the
left illustrate the probability of choosing a compound, and
the adjacent icons illustrate the corresponding listener inter-
pretations.

based semantic composition (e.g., Mitchell & Lapata, 2010;
Dima, de Kok, Witte, & Hinrichs, 2019). In this approach,
word meanings are represented by real-valued vectors in se-
mantic space, and semantic composition is modeled by com-
position functions that take word vectors as input and produce
a new vector as output. In addition to using them to infer the
meaning of novel combinations, previous work has applied
composition functions to derive measures to predict human
behavioural data on the processing of both existing and novel
combinations (Vecchi, Marelli, Zamparelli, & Baroni, 2017;
Giinther & Marelli, 2016; Marelli, Gagné, & Spalding, 2017;
Hsieh, Marelli, & Rastle, 2025). Here we extend these stud-
ies by using vector-based composition to reconstruct attested
combinations given their meanings.

Our work is related to but distinctive from existing com-
putational models of analogy in morphology (e.g., Krott,
Baayen, & Schreuder, 2001; Plag, Kawaletz, Arndt-Lappe, &
Lieber, 2023). With regards to compounding, analogy-based
models have been applied to predicting the use of linking
morphemes (Krott et al., 2001; Krott, Schreuder, Baayen, &
Dressler, 2007) and the position of word stress (Arndt-Lappe,
2011). For a new compound, these models typically compute
the probability of an outcome (e.g., stress position) based on
the similarity between the new item and a group of existing
items in the lexicon that are associated with the outcome. In
the current study, we propose a model that computes the prob-

ability of a possible combination for an intended concept by
using the concept’s similarity with the meanings of existing
compounds that belong to a productive pattern.

In the following, we first formulate our account in compu-
tational terms. We then compare our model to simpler mod-
els by using them to predict the constituents of attested com-
pounds in English, Chinese and German. Finally, we discuss
the implications of our work and future directions.

Computational Formulation

Our account assumes the following setting. Let £ be the lexi-
con which contains the set of existing words, and let D be the
set of existing compounds. Let C be a semantic space of real
vectors, such that each word w corresponds to the semantic
vector ¢y, € C.

We define a compound family as a set containing exist-
ing compounds with the same head or modifier. We assume
each family is partitioned into subfamilies, and each subfam-
ily corresponds to a distinct productive pattern.! In this study,
we focus on analogy with respect to compounds sharing the
same head word (e.g., X + collar), and we leave modifier-
based analogy for future work.

Probabilistic Model of Compounding

Given an intended concept ¢ € C that is not expressed by com-
pounds in D, we wish to predict an expression that consists
of a head word & € L and a modifier word m € L. We for-
malize this computational problem in probabilistic terms by
applying Bayes rule:

p(m,h|c,D) o< p(c|m,h,D)p(m|D)p(h|D). (1)

There are three terms on the righthand side of Equation 1.
The rightmost terms p(m|D) and p(h|D) represent the prior
probability of selecting a specific modifier and head without
considering the intended concept. The third term p(c|m,h, D)
is the likelihood that captures the similarity between ¢ and
listener interpretations of an observed combination. Impor-
tantly, all terms are dependent on statistical tendencies among
existing compounds in the set D.

Likelihood. To formulate the likelihood, we first formalize
listener interpretations via composition and analogy. Since
we assumed meanings are represented in semantic space, a
natural way to model composition is to use vector-based com-
position functions (e.g., Mitchell & Lapata, 2010). Let f(-,-)
be a general composition function that takes a pair of head
and modifier and outputs a vector in C that represents the
compositional interpretation. Similarly, let g;(-|#) be a func-
tion that composes a modifier and existing compounds in the
i-th subfamily associated with head A, such that it outputs a
vector that represents an analogy-based interpretation. These
functions correspond to processes illustrated in Figure 1A.

We formulate the likelihood in Equation 1 by using the
similarity between ¢ and listener interpretations of m and h.

!For example, the subfamily containing software and freeware is
separate from the subfamily containing fableware and kitchenware.
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Because a listener may choose between the compositional in-
terpretation and an analogy-based interpretation, if available,
we define the likelihood as an average of similarities:

p(c|m,h,D) o< gosim(c, f(m,h)) +Zq,~sim(c,gi(m|h)) @)
sim(cy,¢) o< exp(s-cos(cy,c2)) 3

where 0 < g; < 1 is the probability of choosing a specific in-
terpretation, s > 0 is a sensitivity parameter, and cos(-,-) is
cosine similarity. We choose to use cosine because it is stan-
dard in previous applications of composition functions (e.g.,
Mitchell & Lapata, 2010).2

We define the probability of invoking a specific interpreta-
tion by using the prevalence of each pattern among lexical-
ized compounds. Let Nj, be the size of the family associated
with £, and let N}, ; be the size of its i-th subfamily. We define
q; by using family and subfamily sizes:

_Nh+9’ 90 = N,+6

q0 “)
where 0 > 0 is a pseudocount that determines the frequency
of invoking composition. Equation 4 is inspired by previous
work showing that the ease of understanding combination w
is sensitive to the frequency of head-modifier relations asso-
ciated with the constituents of w (Gagné & Shoben, 1997;
Maguire, Maguire, & Cater, 2010).

Priors. In principle, any open-class word in the lexicon can
be chosen as the head or modifier, but the distribution of com-
pound family sizes also tends to be skewed. Previous work in
psycholinguistics suggests that morphological family size fa-
cilitates processing (e.g., De Jong, Feldman, Schreuder, Pas-
tizzo, & Baayen, 2002; Martin, Bertram, Héikio, Schreuder,
& Baayen, 2004), and thus we hypothesize that words corre-
sponding to larger families tend to be preferred by speakers:

p(h|D) < N+, p(m|D) < N, +p S

where o, 3 > 0 are pseudocounts of compound families, and
N), is the number of compounds in D with modifier m.
Smaller pseudocounts increase the preferences for reusing a
word from a large family, and vice versa.

Functions of Compound Interpretation

We now specify the composition function f (-, -) and the func-
tion g;(-|h) that captures analogical reasoning with respect to
the i-th pattern associated with 4. Given a modifier m and a
head word &, we define their semantic composition using the
simple additive function (Mitchell & Lapata, 2008):

f(m,h) =Cm+ch (6)

Because Equation 6 composes the lexicalized meanings of m
and A, the resulting vector represents a compositional inter-
pretation (e.g., dog + collar).

ZWe assume every c is on the unit sphere, which makes Equa-

tion 2 a mixture of von-Mises-Fisher distributions. In this case, the
omitted normalizing constant is only a function of s.

If the head # is associated with a compound family in D,
the interpretation may also be obtained from analogy. Let ry, ;
be the bound meaning of the i-th pattern associated with head
h (e.g., the job-related meaning of X + collar). We define
the interpretation via analogy with respect to this pattern by
composing its bound meaning with the modifier word:

gi(mlh) = ¢+ rp; (7

In contrast to Equation 6, here the interpretation is based on
a bound meaning at the pattern level.

The bound meaning r;,; should capture how existing com-
pounds that form the corresponding pattern tend to relate to
their modifiers.> Here, we represent relations in semantic
space via vector differences (e.g., Rumelhart & Abrahamson,
1973; Vylomova, Rimell, Cohn, & Baldwin, 2016). Let S ;
be the i-th subfamily associated with head /, and m,, be the
modifier of compound w. We define r;,; via the central ten-
dency of these relations:

Hh,i
Thi = 5 Mhi = Cw = YCm, ®)
1 ||‘Uh_’i||2’ ‘Ll 1 WGZShJ w ’Y Ny

where vy > 0 is an additional free parameter that governs the
importance of the modifier in contributing to relational mean-
ing. Equation 8 normalizes 7y, ; to ensure its magnitude is on
par with ¢, in Equation 7.

Note that in the case where a pattern is based on a single
existing compound w, Equation 8 reduces to a single vector
difference. If we plug this difference into Equation 7 and dis-
regard the coefficients on each semantic vector, we obtain the
parallelogram-model solution to a proportional analogy in-
volving four concepts in semantic space (e.g., after observing
software, the listener may infer its meaning by solving “hard”
: “hardware” :: “soft” : ?).

Materials and Methods

In the current study, we evaluate a version of our model that
assumes a single productive pattern per compound family.*
To do so, we first compiled datasets of compound words
drawn from English, Chinese, and German, which are com-
monly studied but show crosslinguistic differences in mor-
phology (e.g., J. Xu & Li, 2014; Giinther, Smolka, & Marelli,
2019). We then split each dataset into training and test sets,
which simulate the lexicon, the set of existing compounds,
and the concepts to be expressed via compounding.
Datasets. We compiled large datasets of English, Chi-
nese, and German compounds. The English dataset consists
of closed English compounds from the Large Database of
English Compounds (Gagné, Spalding, & Schmidtke, 2019)
and entries that are labeled as etymologically obtained from
compounding in a scrape of Wiktionary (Wu & Yarowsky,

3For example, X + ware may represent a computer program char-
acterized by the modifier.

4All code used in analyses is available at https://github
.com/ johnaot/Compounds-compose-analogy
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Figure 2: Comparing the full model against simpler variants across languages. Each bar shows the MRR averaged over five
folds, and error bars indicate standard deviation across the folds. Stars indicate the p-values obtained from comparing models
that involve both processes to composition-only models (“**” indicates p < .01 and “***” indicates p < .001).

2020); these compounds were intersected with Princeton
WordNet (Fellbaum, 1998) after filtering out combinations
involving stopwords and chemical names in WordNet. The
Chinese dataset was obtained by using 2-character com-
pounds in the Chinese Open WordNet (Wang & Bond, 2013),
and words that are chemical names according to WordNet
were removed. The German dataset was obtained from a
large compilation of German compounds (Giinther, Marelli,
& Bolte, 2020), CELEX (Baayen, Piepenbrock, & Gulik-
ers, 1995), and the same scrape of Wiktionary. We removed
combinations involving stopwords or translations of English
chemical names that were obtained from the Google Trans-
late APIL. All compounds in the datasets contain exactly two
constituents; we ignored linking elements in German and
English compounds and we removed compounds containing
other compounds.

In all languages, we implemented the semantic space using
word embeddings trained on Wikipedia (Mikolov, Chen, Cor-
rado, & Dean, 2013; Li et al., 2018; Yamada et al., 2020); all
vectors were normalized. After ensuring the compounds and
constituents map to vectors, we obtained 5,093 English com-
pounds, 11,420 Chinese compounds, and 42,715 German
compounds. Note that this implies the remaining Chinese
character constituents also function as independent words.

Methods. For each language, we set the lexicon L to be
the set of all constituent words in the compound dataset. The
lexicon contained 2,646 words, 3,535 characters, and 9,487
words for English, Chinese, and German, respectively. We
then randomly sampled at most 10,000 compounds from the
dataset and applied 5-fold cross-validation to the subset. In
all languages, we assumed all compounds are right-headed,
except for Chinese verbs which we assumed are left-headed.’

We used the training set to estimate model parameters.
For each training set, we randomly set aside 3/4 of com-
pounds to initialize the set D. We used the remaining 1/4
as a development set to estimate the parameters via a lim-
ited grid search, searching over {10" : n = —2,—1,..,2} for
oand B, {x/(1—x):x=0.5,0.4,0.3,0.2} fory, {1,10,100}
for , and {0.0171,0.027!,....1} for s. For every combina-
tion of o, 3,7 and 6, we first set s by maximizing the likeli-

5Ceccagno and Basciano (2007) estimates that about 75% of
Chinese compound verbs are left or two-headed. These words are
usually combinations of V + V or V + N.

Language Model type Spearman p  p-value
English comp-only —0.276 <.001
comp + analogy —0.491 <.001
Chinese comp-only —0.058 < .001
comp + analogy —0.421 <.001
German comp-only —0.240 <.001
comp + analogy —0.424 <.001

Table 1: Correlation between predicted rank and family size.

hood []p p(c|m,h,D), where D' contains compounds in the
development set, and then we ranked all possible combina-
tions given the meaning of each attested compound in D’ ac-
cording to the score given by Equation 1. We chose the set of
values that maximizes the mean reciprocal rank (MRR) ob-
tained from the ranks of attested combinations.

We used the test set to evaluate the model by using Equa-
tion 1 to score each attested combination given its meaning.
The full model was compared with simpler baselines: 1) a
model that only involves composition, 2) a model that sets
the priors to uniform, 3) a model that combines the previous
two settings, 4) a prior-only model, and 5) a uniform distri-
bution. The parameters of all baseline models were estimated
in the same way as the full model based on the training set.

Results

We first evaluate the model by reconstructing an attested com-
bination given its meaning. We then perform fine-grained
analyses of bound meanings at the pattern level and across
compound types.

Model evaluation. Figure 2 summarizes model perfor-
mance through MRR. We observe that the full model obtained
the best performance in all three languages. We also observe
that the priors tend to improve model performance across lan-
guages and that the model with full likelihood but no prior is
superior to composition-only models in English and Chinese.
Similar observations can be made if we used top-k accuracy
to evaluate the models.

Figure 3 shows the ranks predicted by the two models with
priors and the (head-based) family size of every attested com-
pound. We observe that the full model tends to dominate the
simpler baseline across most family sizes. We also observe
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Figure 3: Comparing the full model and the composition-only model (including priors) in terms of attested-compound rank
across family sizes. Predicted ranks lower in magnitude indicate better performance.

Head Lexicalized meaning NNs Bound meaning NNs

downtown, condo
dopy, cruelness

front rear, frontmost
head coach, helm

Table 2: Samples of nearest neighbours (NNs) of the lexical-
ized and bound meanings of certain head words.

Language Spearmanp p-value N

English —0.487 <.001 4,187
Chinese —0.316 <.001 8,625
German —-0.413 <.001 7,856

Table 3: Correlation between cosine similarity and model
predicted rank.

that predicted rank tends to improve with family size for both
models in the cases of English and German, but this only ap-
plies to the full model in the case of Chinese. This is con-
firmed by the correlations between predicted rank and family
size in Table 1, and it may be in part explained by the pre-
vious observation that including priors which encode family
size information improves performance.

Bound meanings at the pattern level. Table 2 shows a
sample of the neighbours of the lexicalized meanings and
bound meanings of the same head words, which were re-
trieved from the vocabulary of our embeddings. We can see
that X + front clearly developed a property-related meaning
(as in beachfront) distinct from the original location-related
meaning, and X + head obtained a meaning that is more re-
lated to personal character (as in metalhead). These English
examples illustrate the semantic shift of pattern-level mean-
ings from the lexicalized meanings of head words.

We hypothesized that compounds tend to inherit the bound
meanings of productive patterns to a degree greater than their
degree of inheritance from the lexicalized meanings of head
words. We quantified the degree to which a specific meaning
is inherited by measuring the cosine similarity between the
former and the intended meaning of a compound. Figure 4A
shows the distribution of differences given by subtracting
bound-meaning similarities from lexicalized-meaning simi-
larities. We observe that bound meanings are on average
much more similar to intended compound meanings in En-

A ENGLISH CHINESE GERMAN

Density
no

T u T 0 T } T 0 T f T
—0.5 0.0 0.5 —0.5 0.0 0.5 —0.5 0.0 0.5
A Cosine Similarity A Cosine Similarity A Cosine Similarity

‘wc

—
=}
—
=}

1.0+

0.5 0.5

Normalized Count
(=]
ot

o

0

- 0.0- 0.0-
Composition Analogy Composition Analogy Composition Analogy

Figure 4: Semantic similarity between head and compound
meanings. Panel (A) shows the distribution of differences in
similarity between intended compound meanings and differ-
ent meanings of the head; green lines show mean differences.
Panel (B) shows the proportion of compounds that are more
similar to lexicalized meanings and the proportion of com-
pounds that are more similar to bound meanings.

glish (#(4,186) = 29.57,p < 0.001), Chinese (#(8,624) =
109.40,p < 0.001), and German (#(7,855) = 13.01,p <
0.001). A similar trend can be observed in Figure 4B. These
results may in part explain the better performance of the full
model since higher similarity between bound and intended
meanings correlates with better predicted rank (see Table 3).

In Figure 4, we can also observe that differences between
lexicalized and bound meanings in terms of their similarity
with intended meanings tend to be smaller for German com-
pounds relative to English compounds. This is consistent
with an earlier empirical finding that German complex words
tend to be more transparent than English ones (Giinther et
al., 2019) and earlier observations by linguists suggesting that
the German lexicon is more motivated than the English lexi-
con (de Saussure, 1916; Ullmann, 1953).

Literal and non-literal head words. Recall that an ad-
vantage of analogy over composition is that it is capable
of addressing certain non-compositional compounds (e.g.,
green-collar). We examined one type of non-compositional
compound known as exocentric compounds, in which the
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Model type Compound type  MRR N

comp-only endocentric 0.0482 1,962
exocentric 0.0257 2,818

comp + analogy endocentric 0.0660 1,962
exocentric 0.0565 2,818

Table 4: Comparing model performance across English en-
docentric and exocentric noun compounds.

Target F.size Rank Top model predictions
taxicab 0 23 taxi-car, taxi-bus
mastermind 0 13k evil-leader, shadow-leader
beachfront 3 1 beach-front, beach-land
metalhead 43 4 metal-boy, metal-man

Table 5: Examples of predictions from the full model. The
second and third columns show the family size and predicted
rank of the attested compound (target), respectively.

head is not a hypernym of the compound (e.g., seahorse
is not a horse). Specifically, we hypothesized that the full
model is able to better account for exocentric compounds
than the best-performing composition-only baseline. Fol-
lowing A. Xu, Kemp, Frermann, and Xu (2024), we used
WordNet (Fellbaum, 1998) to categorize English noun com-
pounds into exocentric and non-exocentric (or endocentric)
compounds. We compare model performance across com-
pound types in Table 4. We observe that both models tend
to perform better for endocentric compounds. Although we
observe that the ranking of models remains the same across
compound types, we also observe that the performance gap
across types appears to be smaller for the full model.

We demonstrate the relative advantage of the full model
with English examples in Table 5. Similar to a composition-
only model, the full model is able to generate compositional
expressions, which accounts well for compositional com-
pounds like faxicab but not for non-compositional and non-
analogical compounds like mastermind. However, the full
model gains an advantage when an analogy-based interpre-
tation of the attested combination is highly similar to its in-
tended meaning. This can be demonstrated by the examples
of beachfront and metalhead: using the bound meanings of
X + front and X + head, the model assigned similar ranks
to non-compositional attested combinations and hypothetical
combinations that have similar interpretations but are compo-
sitional (e.g., beach-land, metal-man).

Discussion

We have presented a computational account of compound-
ing that integrates the cognitive processes of composition and
analogy. Using datasets of compounds from English, Chi-
nese, and German, we tested computational models that re-
construct these compounds given their intended meanings.
We showed that our full model, which integrates both pro-
cesses, performs better than simpler baselines across all three

languages.

Our work connects two separate lines of research on com-
pounding by integrating the underlying cognitive processes.
Specifically, traditional accounts focus on regularities among
compositional relations between the constituents of attested
compounds (e.g., Levi, 1978; Jackendoff, 2010), which cor-
respond to the composition process, while a separate line
of work appeals to the general cognitive process of anal-
ogy (e.g., Booij, 2010; Klégr & Cermak, 2010). In our
account, a speaker creates a new compound by choosing a
word combination that has an interpretation similar to their
intended concept. Since compound interpretation may take
place via the composition of the constituents or via analogical
reasoning with respect to existing compounds, both processes
are naturally integrated into our account.

Our account emphasizes the similarity between listener
interpretations and intended meanings, and thus is closely
related to functionalist accounts of compounding which ar-
gue that new compounds are shaped by a pressure for in-
formativeness (Downing, 1977; A. Xu et al., 2024). How-
ever, these accounts typically assume that listeners inter-
pret compounds via some type of semantic composition, and
thus they have limited applicability to the creation of non-
compositional compounds. Our findings suggest that func-
tionalist accounts may provide a better explanation for cer-
tain non-compositional compounds by considering analogical
processes in compound interpretation.

The full model examined in this paper can be extended
in various ways. For example, there are various composi-
tion functions that are more involved than our simple addi-
tive function (e.g., Mitchell & Lapata, 2010; Marelli et al.,
2017), which may be able to better capture the regularities
of compositional compound interpretation. Moreover, we
made the simplifying assumption that every compound fam-
ily corresponds to a single productive pattern. In contrast,
existing semantic analyses of compounding that emphasize
analogy tend to consider patterns that are subsets of a com-
pound family or local analogies based on a single existing
compound (e.g., Booij, 2010; Mattiello & Dressler, 2018).
One way to model productive patterns in a more fine-grained
manner is to use clustering to identify meaningful compound
subfamilies, which can be straightforwardly integrated into
our computational model.

Since we formulated our account in computational terms,
we were able to validate the role of composition and analogy
in compounding by reconstructing attested compounds. In
contrast, theoretical accounts of morphology have often as-
sociated analogy with unpredictability (Arndt-Lappe, 2015).
Although recent computational models have in part addressed
this concern (e.g., Krott et al., 2001; Plag et al., 2023), to our
knowledge we have presented the first computational account
that specifies how analogy can predict the head and modi-
fier in new compounds. In the future, our approach may be
extended to analyze a more typologically diverse set of lan-
guages and datasets of recent neologisms.
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